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Abstract
While inflatable technology is flight proven, the ability to control the shape of

a flexible space structure to optical precision has yet to be demonstrated. A laminate

of a piezoelectric polymeric material and a reflective structural material can deform

a membrane optical surface; however, modeling of this system must be improved.

In this dissertation, the complete mechanics of laminated flexible beams and

circular membranes are developed. Analytic solutions to the beam and axisymmetric

membrane models are produced to provide insight into the behavior of these systems.

Based on these results, a new mathematical methodology rooted in fundamental

perturbation techniques was developed: The Method of Integral Multiple Scales

(MIMS).

MIMS allows selectable precision when applied to the class of dynamic systems

which can be represented through a Lagrangian. For illustration, this new method

is first applied to a relatively simple linear beam. The method was able to integrate

spatial and temporal multiple scales directly producing boundary layer results. Next,

the method was fully realized through the finite element approach; the accuracy was

shown to be three orders of magnitude greater than a standard finite element formu-

lation. Finally, the finite element methodology was applied to the nonlinear beam

and axisymmetric circular membrane and compared to analytical solutions. Various

actuation patterns were analyzed to produce insight for future design decisions.

x
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MODELING AXISYMMETRIC
OPTICAL PRECISION

PIEZOELECTRIC MEMBRANES

I. Introduction
Inflatable structures have been the focus of research and have proven them-

selves enabling technologies since the 1950’s. In the past several years, research ef-

forts in inflatable structures technology for space-based applications have increased

(1). A substantial portion of these research efforts were and currently are directed

at precision inflatable structures for use as primary support structure replacement

or reflector/collector fabrication.

The first inflatable satellite was orbited in 1960 with the launch of NASA’s

ECHO I. Prior applications included inflatable truss structures, radar calibration

spheres, and lenticular shaped reflectors (2). Due to weight and volume restrictions

in the early space program, inflatables were considered an enabling solution. NASA’s

ECHO I and ECHO II provided early communications capabilities; Explorers IX and

XIX were used for high altitude atmospheric studies, and PAGEOS I provided earth

survey information. These inflatable structures ranged from 12 ft. in diameter and

34 lbs. (Explorer) to 135 ft. in diameter and 580 lbs. (ECHO II). The lack of

industry experience, coupled with an overly conservative estimate of the meteoroid

threat, resulted in inflatable space structures development all but vanishing (3).

Since the 1980’s, a resurgence of inflatables technology occurred resulting in

the deployment of the IN-STEP Inflatable Antenna Experiment (IAE) in 1996 (4).

Although problems occurred during deployment, this experiment validated many

technologies (5). The photographs in Figure 1.1 are of the IAE during deployment

1-1
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(a) (b)

Figure 1.1 The IN-STEP Spacecraft (a) Deployment (b) Fully Deployed

and in its final, fully deployed, configuration. Made of 7 micron thick Mylar1 gores,

the 14 meter inflatable reflector, including inflatable struts, was packaged inside an

80 in x 43 in x 21 in canister and deployed during the NASA space shuttle mission

STS-77. The IAE was primarily a technical demonstration, but proved inflatable

structures can be used as space structures.

Space inflatable applications can be organized into three general areas: 1.

support structures, 2. reflectors/collectors, and 3. targets. Various organizations

currently develop inflatable, deployable space structures (e.g., Aerospace Recovery

Systems, Contraves, ILC Dover, L’Garde, SRS, Thiokol, and United Applied Tech-

nologies). As auxiliary structural supports, significant launch volume and weight

can be saved.

Current designs for Synthetic Aperture Radar (SAR) (6, 7, 8) and deployable

waveguides (7) use inflatable struts to provide the required shape. L’Garde’s solution

is to provide an inflatable frame using inflatable struts which provide the necessary

geometry and tension for the membrane based devices. Figure 1.2 is an example of

the SAR. An alternative solution selected for the MarS mission (7) is to encapsulate

the planar radar array inside the inflatable structure (6). Its mission, to map the

Martian surface, allows for non-rigidized struts. A similar mission to map the earth

1Trademark of E.I. duPont de Nemours & Co., Inc.
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Figure 1.2 Synthetic Aperture Radar (L’Garde)

surface, LightSAR, has higher tolerances requiring rigidized struts. LightSAR uses

an inflatable triangular truss structure, which contains both the radar antenna and

the solar array.

Additional applications include interferometer and solar sail support struc-

tures. By creating a 50-100 meter class inflatable support structure, a system of 1

meter class apertures can be arranged for interferometric applications (8). Due to the

necessary size imposed by solar sails, inflatables could provide the support structure

making the mission tractable (7, 8). An inflatable structure provides an alternative

to the mechanical sunshade, and is the preferred solution for the upcoming Next

Generation Space Telescope (NGST) (2, 9).

Communications and surveillance missions seem to be natural candidates for

inflatable structure given that a lenticular shape is easily attainable. Large-scale

inflatable near-parabolic reflectors have been created to demonstrate various man-

ufacturing capabilities (7, 10). The Advanced Radio Interferometry between Space

and Earth (ARISE) project is currently in development (see Figure 1.3) (11, 12).

1-3
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Figure 1.3 Advanced Radio Interferometry between Space and Earth (ARISE)

Using one or more 25 meter class radio telescopes in highly elliptical earth orbits, ex-

tremely high resolution of astronomical phenomena is possible. Optical wavelengths

are also under consideration, but would require a significant increase in the accu-

racy of the parabolic reflector. An interesting combination uses the same reflector

both as a solar concentrator as well as a communications antenna (7, 8). The current

requirement for Radio-Isotope Thermal Generators (RTG) for outer solar system ex-

ploration missions could conceivably be satisfied by using large solar concentrators.

The Power Antenna concept uses a lenticular shaped, parabolic inflatable reflector

supported by an inflatable strut/torus structure. The solar energy is focused into an

absorber for energy conversion. A beam splitter is used to separate the desired RF

bands used for communications.

Current developments in advanced propulsion technologies also make use of

inflatables. A flight experiment named Shooting Star (now cancelled) was designed

around a Fresnel lens solar concentrator supported by an inflatable strut/torus struc-

ture (Figure 1.4) (13). Currently, the Solar Thermal Propulsion (STP) project is

1-4



www.manaraa.com

Figure 1.4 Shooting Star Spacecraft Figure 1.5 Solar Orbit Transfer Vehicle

in development as a possible upper stage replacement. The Solar Orbit Transfer

Vehicle (SOTV), shown in Figure 1.5, uses the developments of the STP program

to provide economic benefit and provides support in all three reflector/concentrator

categories (10). After using the reflectors during the orbital transfer phase as a high

specific impulse propulsion source, the absorber is reconfigured for power generation

and/or communications/surveillance support.

Space inflatable technology is also used for optical and RF targets. The Optical

Calibration Sphere (OCSE) was designed, built, tested, and delivered in less than

four months, illustrating the maturing of the technology (14). The Exoatmospheric

Target/Decoy is a complex dodecahedron radar reflector (14). This 6 ft reflector was

packaged in a 0.5 cubic ft. container.

Current research covers virtually all aspects of inflatable technology in support

of the various application opportunities. From materials research to new systems

design approaches, inflatables are challenging all technical fields. Space-based optics,

however, drives the required precision beyond the limits currently available using

inflatable technology.

1-5
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1.1 Space-Based Optics

Reconnaissance and energy transmission missions increasingly demand larger

reflectors. The Hubble telescope contains the largest optical reflector launched into

space to date. Due to current launch vehicle constraints, larger, single-piece, rigid,

space-based reflectors do not appear possible. One solution is to create the primary

reflector by deploying a number of rigid subsections. This solution can increase

the reflector size, but the ultimate size is quickly reached due to the weight and

complexity of the overall system. An alternative solution might be an inflatable

system, which can achieve very large reflector sizes compared to its pre-deployment

storage volume.

A current effort seeks to create inflatable lenticular reflectors. Although these

structures seem natural for reflectors and concentrators, the accuracy required for

the surface at optical wavelengths (∼ 600 nm) has yet to be attained (3). Pressuriz-

ing a uniform material in this configuration results in a near parabolic shape in which

the ‘nearness’ is related to pressurization levels and initial pre-stress induced prior

to inflation (15, 16). Although creating an optically accurate membrane reflector

would provide a significant boost, additional problems must be considered. Manu-

facturing and material inaccuracies, always present, will provide significant localized

errors which must be corrected. Optically precise membranes must be accurately cre-

ated and maintained to provide the reflected wavefront necessary to satisfy mission

requirements.

1.2 Optical Precision Membranes

The ability to create and operate optical quality membrane mirrors requires a

number of technological advancements. Due to the inherent flexibility of a membrane

surface, static mechanical actuation tends to produce only a localized effect (13).

To correct the aberrations in the reflected wavefront from the membrane mirror, a

1-6
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method to globally manipulate the reflective surface must be derived. Additionally,

the materials desired for the membrane mirror tend to be approximately 100 microns

thick, while the total area of the reflected surface can measure over 60 square meters.

A space structure with this aerial density is often referred to as a Gossamer structure.

From the large scale of such structural concepts to the extremely small wavelengths

of interest in an optical system, there are many areas rich with research topics. The

research presented herein explores the use of piezoelectric materials to manipulate the

surface deflections of the membrane, creating the desired wavefront when reflected

by the mirror.

Wagner conducted preliminary work in support of this research effort creat-

ing a laser-based surface measurement system capable of evaluating the surface at

sub-wavelength accuracies (17). Using an interferometer, the fringe patterns were

observed for wavefront distortions. In addition, an Adaptive Optics Associates

(AOA) Wavescope provided Shack-Hartman wavefront sensor measurements. Us-

ing the Wavescope, the test system directly measured the the Zernike coefficients of

the reflected wavefront. Wagner created and measured surface accuracies of seven

different Polyvinylidine Flouride (PVDF) actuated membrane mirrors. Actual sur-

face correction was not intended. While he proved the test system was adequate to

measure the surface of a membrane mirror, he was unable to construct a satisfactory

PVDF bonded membrane mirror. The bonding technique caused significant surface

distortions (print-through) which dominated the error patterns. The fabricated mir-

rors produced significant surface movement when voltage was applied to the PVDF;

hence, the results of this initial phase of the overall research program do provide

confidence that such a device can be created.

1.3 Research Goals and Scope

The research herein presents a method to analyze piezothermoelastic laminated

membranes to optical precision. The current computational analysis tools available

1-7
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to an analyst are either limited to homogenous materials, unable to adequately

model a laminated membrane, or fundamentally based on materials of significantly

higher stiffness, resulting is significant error. A finite element approach is developed

which provides extreme precision, when compared to standard tools available. This

new methodology, based on the Method of Integral Multiple Scales, first introduced

herein, can provide asymptotic solutions for systems containing ‘small’ parameters.

The validation of this methodology is presented through comparison of known solu-

tions.

Chapter II presents a broad background illustrating the technical challenges ad-

dressed with this research. Chapter III presents the introductory concepts through

a thorough development of an analytical solution of a piezothermoelastic beam-

string representing a cross-section of an electrically actuated inflatable structural

element. The localized nature of the applied forces are clearly exhibited as small

boundary layer effects. Chapter IV further expands this development to a circular

plate-membrane model. The affects actuating forces have on a reflected wavefront

are discussed. Chapter V develops finite element models using asymptotic expansion

theory. The Method of Integral Multiple Scales (MIMS) is introduced, and used to

formulate the finite element method. A linear beam is modelled to illustrate this

novel method. Chapter VI expands this method into the solution of nonlinear prob-

lems. MIMS is applied to the nonlinear beam and circular plate problems presented

earlier and compared to the analytical solutions presented in the previous chapters.

1.4 Contributions

The contributions within this dissertation are outlined here for clarity. The

author has conducted a thorough literature review and is unaware of any previously

published material relating to these subjects.
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1. Chapters III and IV introduce beam-string and plate-membrane analytical

solutions for piezothermoelastic laminates.

(a) Energy-based equation of motion derivations produce the nonlinear equa-

tions governing the behavior of piezothermoelelastic laminated beam-

strings and circular plate-membranes.

(b) The methodology introduced integrates three previously independent meth-

ods to produce the desired solutions.

(c) Static and dynamic solutions for the laminated beam-string and an ax-

isymmetric plate-membrane are produced.

2. The Method of Integral Multiple Scales (MIMS) introduced in Chapter V

presents a new perturbation method for solving Lagrangian-based systems.

(a) An analytical solution is provided to illustrate the basic mechanics of the

method for both spatial and temproal scales.

(b) A finite element methodology, based on MIMS, is developed.

i. Parametric asymptotic shape functions providing boundary layer ca-

pabilities are introduced.

ii. Static and dynamic solution methods are developed.

3. Nonlinear MIMS based finite element solutions of the piezothermoelastic lam-

inates are presented in Chapter VI.

(a) Static beam-string solutions illustrate the method’s ability to model elec-

trode distribution patterns.

(b) Static and dynamic axisymmetric optical membrane solutions are pro-

duced illustrating the capability of the piezo-laminate to modify a re-

flected wavefront.

Through the development of these contributions, a comprehensive set of an-

alytical and numerical solutions are presented to aid in the further development of
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inflatable optical reflectors. The introduction of MIMS promises far-reaching impact

as a solution methodology for many areas beyond the specific application herein.
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II. Background
Creation of a space-based inflatable optical reflector is beyond current tech-

nology. Advancements are necessary in many areas, including improved material

properties, initial static shaping, and dynamic control of such compliant structures.

This chapter outlines the pertinent published information related to the research

goals discussed in Chapter I.

2.1 Inflatable Structures

Currently, space-based inflatable structures are constructed from polymeric

thin films. The IAE design team chose Mylar. While primarily a technology demon-

stration, on-orbit post-deployment surface accuracy of the IAE was measured at

2mm rms (5). An RF (28 GHz) reflector surface requires a surface accuracy of

approximately 0.58 mm rms (3). An optical reflector would require significantly

higher precision (¡ 0.05 mm rms). Using interferometry methods, various materials

were found to have significant thickness variations (18). UPILEX, with improved

thin-film material qualities, has been considered in an attempt to increase surface ac-

curacy. The need for further improvements led to development of improved materials

(e.g., CP-1 and CP-2 have been developed by NASA and SRS Technologies).

The compliance of an inflatable structure can not satisfy many mission’s re-

quirements. Many materials, however, can remain flexible prior to deployment, and

be rigidized on-orbit. May, et al. compiled space cured composite structure informa-

tion through a literature search (19). Rigidization techniques included Plasticizer or

Solvent Boil-off, Vapor Reactions and/or Catalysis, Ultraviolet Radiation, Thermal

Cure, Elastic Memory, and Anaerobic Curing. The ability to strengthen the structure

post-deployment will significantly improve inflatable structure mission requirements

compliance.
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Research underway at the Directed Energy Directorate of the Air Force Re-

search Laboratory (AFRL/DE) seeks to create an inflatable optical telescope (20).

A comprehensive review has produced both qualitative and quantitative measures at

optical tolerances to evaluate a material’s appropriateness (21). Membrane material

thickness and shape variation categories were defined. Their effects on the reflected

wavefront were described as well as resulting prestress effects. These categories can

be used to evaluate prospective material candidates.

2.2 Environmental Effects

An understanding of the environmental effects on thin-film, polymeric mate-

rials is critical to the life cycle of any inflatable structure. Atmospheric conditions

are not only important prior to deployment, but can affect the structure on-orbit.

Gierow, et al. studied temperature and humidity effects relating to system pressure

and thickness (22). Analysis presented indicates film thickness and pressurization

levels are the most critical parameters and should dominate optimal design method-

ology of an inflatable space structure.

Post-deployment mission requirements will include dynamic activity such as

slewing and repositioning. These maneuvers will impart significant vibrations through

the structure. Dynamic behavior of inflatables continues to be a rich research envi-

ronment. Non-rigidized inflatable beam analysis by Main has produced significant

insight into the nature of this behavior (23). Of interest were determination of damp-

ing mechanisms present, practical model development and illustration of ground-test

vs. on-orbit behavior discrepancies. Results indicated viscous damping was inde-

pendent of pressurization, but the resulting stresses due to pressurization did affect

strain-rate damping. The Bernoulli-Euler model used defined viscous damping as the

effect due to the beam moving through the medium, and strain-rate damping result-

ing from the internal damping mechanisms within the beam. This model was shown

to be adequate at lower natural frequencies. Through testing, gravity was shown
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to have a significant effect on system damping. As gravity increased, wrinkling also

increased, resulting in a drop in system damping.

The dynamic nature of a mission and the environment often demands a control

mechanism, whether active or passive to either satisfy design requirements or relax

design parameters. Structural vibrations, causing reflector surface movement, results

in dynamic wavefront variations which must be corrected either real-time or through

post-processing. Adaptive optics techniques could be implemented to correct these

wavefront aberrations.

2.3 Post-Deployment Correction

Significant effort is being spent towards creating the perfect near-net reflector

shape. Even if this end is met, disturbances will require some method of correction.

Since correction is required through the life of the structure, it should be integrated

earlier in the design process as a method to correct deviations present at any time.

This could result in the relaxation of certain design parameters early in the design

process. Adaptive optics could correct wavefront distortions received from an im-

perfect reflector, and the structure could be manipulated to improve the surface

accuracy.

2.3.1 Adaptive Optics. Adaptive optics techniques can be used

to manipulate the reflected wavefront, often correcting the aberrations present. One

very promising technique is Real-Time Holography (RTH) which promises the ability

to correct hundreds of waves of aberrations (24, 25). Coupled with a coarse correction

scheme used to actually deform the mirror, a viable imaging system may be possible.

The RTH technique uses a surface interferogram projected onto a real-time optical

recording medium, which is used to generate a diffraction hologram. This research

was not concerned with the actual application of the RTH technique. It is only

introduced to illustrate the true accuracy requirement for a membrane mirror in order
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to produce a usable optical system. This addition to an inflatable reflector system

allows for a less precise surface. A reflector designed to precision levels satisfying RF

mission requirements could conceivably satisfy optical mission requirements. While

an RF reflector requires much lower precision than an optical reflector, significant

technology advancements are still necessary.

As previously discussed, a large effort has been underway to create an opti-

cal reflector by improving design and manufacturing processes as well as material

properties. Regardless of the actual shape produced, system vibrations will cause

wavefront distortions which ultimately must be compensated. This will require some

method of control. An inflatable system, however, cannot use many standard meth-

ods of control due to its extremely high compliance. Any point force or moment

applied will cause localized buckling (or wrinkling) reducing the force’s effectiveness.

Distributed forcing is therefore considered an option to apply control.

2.3.2 Active Structural Control. An example of active struc-

tural control applied to inflatable structures was presented by Bailey’s review of a

program to develop piezoelectric actuator distribution technology (26). Using a

piezoelectric polymer material polyvinylidine floride (PVDF), a simulated large flex-

ible space structure was tested. The low-authority actuators using PVDF were found

to be unsatisfactory for large disturbances (e.g. slewing or docking maneuvers) in

short time periods. For low disturbance levels, materials such as PVDF can provide

increased system damping. While the low-authority of this material is unsatisfactory

for overall structural control, it’s compliance, low mass and low volume, make it an

attractive option worthy of further research.

PVDF has been applied to a laminar glass plate and evaluated for its shaping

effectiveness (27). Interferograpic images were evaluated and frequency characteris-

tics measured as voltage levels were applied to plates with shaped PVDF patches

applied.
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Utku discussed piezo-film or shape memory alloy actuators as a mechanism

to manipulate the shape of low-frequency antenna reflectors (28). Linearized thin

shell and membrane theories were used assuming deviations are on the order of the

surface thickness. Zernike decomposition was used to provide a measure of effective

surface distortion. Appendix A presents a short introduction to Zernike modes and

how they relate to membrane vibration modes.

Membrane mirror wavefront correction using laminated PVDF was studied

by Xin (29). Experimental results from a study of electrode distribution patterns

across a circular piezoelectric laminated membrane mirror indicated such a method

did modify the wavefront. By using Zernike decomposition, Xin was able to directly

relate structural deformation to standard optical wavefront modes providing good

optical wavefront comparisons.

Bishop used a genetic algorithm to successfully correct for defects in an inflated

flat membrane (30). Using distributed edge springs, surface distortion was reduced.

Grossman introduced a tension-resisting element along the major axis of an

elliptical rim (31). The result is a reduction of loads and deformation in the rim

structure and therefore improves its ability to provide adequate support for the

reflector.

Moore evaluated catenary suspension of a reflector using a tunable catenary

concept (32). Uniform tensioning of the catenary supports significantly improved

the reflector shape, while individual load optimization produced only modest im-

provements.

Wilkes has presented two methods of shape manipulation (33). Edge tension is

shown to have limited effect as f/D decreases. The f/D is a ratio of the focal distance

to the reflector diameter: as f/D decreases, the curvature increases. A novel idea

of using a plunger to translate the center of the membrane along the optical axis

dramatically improves the reflector shape.
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Greschik presented a comprehensive parametric study involving material ir-

regularities, thermal loads, boundary layer effects and wrinkling (34). Reflectors

became increasingly sensitive to design approximations and physical perturbations

as the f/D increases (shallow dishes and higher pressures).

2.4 Research Focus

The research presented herein focuses on the effective modeling of an axisym-

metric piezothermoelastic laminated membrane to optical precision. The author is

not aware of any published information which adequately presents a modeling ca-

pability providing the precision demanded by the application of concern. Through

a mechanics-based development, the fundamental behavior of these materials are

modelled. Inflatable optical reflectors, possessing such extremely small thickness to

area ratios, can not efficiently be treated as standard thin plates or shells. To better

develop the necessary insights, initial development of a beam model is presented.

2.4.1 Nonlinear Beams. Beam theory often provides the insight

necessary to tackle more complicated problems in multiple dimensions. Eringen

provides the fundamental theory on the classical vibration of bars assuming the

deflection is small (35). The boundaries are allowed to move in the axial direction,

and deflection is inextensional . The equations of motion were derived from dynamic

equilibrium and perturbation techniques were introduced as a method to solve the

resultant coupled set of equations. The resultant methodology is useful in analyzing

small amplitude beam deflections.

Aravamudan presents large amplitude effects on inextensional and extensional

vibrations of slender uniform elastic beams (36). Equations of motion were derived

from basic energy principles assuming large amplitudes, but linear elasticity, shear

deformation and rotatory inertia were ignored, plane sections remain plane and nor-

mal to the beam centerline, and damping and hysteresis is ignored. Perturbation
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techniques were again used to solve the resultant system. Beam stability was ana-

lyzed as well as a comparison to numerical predictions.

Crespo da Silva studied non-linear, non-planar motion of beams (37, 38). Equa-

tions of motion with order-three nonlinearities suitable for perturbation analysis were

developed from energy principles using Hamilton’s extended principle assuming an

inextensional beam and neglecting shear deformation. Perturbation analysis was

presented and a representative test case was discussed.

Nayfeh formulated the beam-string solution from elemental dynamic equilib-

rium, allowing the deformed beam planes to move from perpendicular but remain

plane (39). A perturbation solution was presented using first-order expansions and

transverse shear and rotatory inertia were taken into account.

2.4.2 Nonlinear Plates/Membranes. With the basic un-

derstanding of beam behavior and the methodologies available to solve such one-

dimensional formulations, the two-dimensional problem can be attacked. Steele

presents a comprehensive review of the structural mechanics analysis of pressur-

ized membrane optical performance (40). Asymptotic solutions to the developed

shell equations are presented and discussed. Asymmetric results of edge effects are

shown to approach axisymmetric results due to the large diameter to thickness ratio.

With highly compliant two dimensional shapes comes the additional problem of

wrinkling. Mikulas preformed early elastic analysis of deeply curved, axisymmetric,

partly wrinkled membranes formed from an initially flat sheet (41). Wrinkling re-

gions were predicted and experimentation validated the theory. More recently, Kang

studied anisotropic and isotropic materials, allowing finite rotations (42). A coor-

dinate system aligned with the wrinkling pattern allowed for a simple and efficient

Lagrangian-based finite element analysis methodology.
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Wilkes presented limitations of edge tension manipulation with regards to pres-

surized membrane shaping (43). Based on Hencky-Campbell membrane theory, the

membrane was modelled and compared to experimental results.

Marker discussed the nature of the “W-Profile Error” or “Spherical Aberra-

tion” inherent with initially flat pressurized membranes (44). He clearly shows why

removal of this phenomenon is necessary for optical reflectors, and how this error

increases with reduction of f/D, or ‘deepness’ of surface.

Jenkins used analytical predictions based on Von-Kármán axisymmetric plate

equations to define surface deviations (45). Nonlinear computational analysis is

implemented using the finite element analysis tool ABAQUS. Manipulation of the

boundary (rim) of a pressurized membrane was evaluated as a mechanism for shape

correction. The inherent “W-profile error” present in inflated circular membranes

was altered through discrete boundary displacements. Active methods including

electrostatic, thermal, and boundary control were discussed as possible shape ma-

nipulation techniques.

Greschik presents a case study of different assumptions towards shape predic-

tion of pressurized membranes (46). Both initially flat and doubly curved mem-

branes with f/D ratios ranging from 0.25 to 10.0 and pressurization ranges resulting

in skin stresses from 125 psi through 1000 psi at the center were presented. Ignoring

wrinkling was shown to significantly increase errors in shallow dishes with low pres-

surization levels. All analysis focused on the RF frequency range precision level, but

qualitative extension to higher frequencies is included.

Due to the limitations present in analytical solutions, significant effort has re-

sulted in a couple specialized finite element analysis tools to be used in the design of

inflatable structures. Palisoc described FAIM: Finite Element Analysis of Inflatable

Membranes computer code (47). This is a family of utility programs for the design

and analysis of inflatable membrane structures. Its capabilities include geometric

and material nonlinearities as well as static and modal dynamic analysis. Available
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forcing methods are follower pressure, body-loading (G-forces), point-loading, and

nodal or thermal loads. This utility was developed by L’Garde Inc. to aid in the

development of their space-based RF reflector designs. Greschik realized FAIM is

not adequate for optical system accuracies (48). The fundamental pressurized mem-

brane model cited by virtually all researchers was the foundation work presented

by Hencky (49). The power series approximation method, proved far too limiting

in the evaluation of reflectors used at optical wavelengths, and needed to be im-

proved. A solution method was needed which would satisfy a λ/20 precision, where

λ is the wavelength in question. Based on this analysis, a new software package

was developed: AM (Axisymmetric Membrane) (16). This package includes geomet-

ric nonlinearities and wrinkling predictions. By modeling the axial displacements

present in a pressurized membrane shape, an improvement to FAIM was claimed.

This improvement is more prevalent as the frequency of reflected energy is increased.

As with FAIM, this system was used to solve the inverse problem, or calculating the

initial shape necessary to produce the correct pressurized surface.

Using both codes, FAIM and AM, Palisoc analyzed state-of-the-art membrane

reflector designs (3). Initially flat and curved surfaces were discussed. FAIM and

AM codes were tested against each other and experimentally validated. Analysis

indicated inflatable reflectors capable of supporting lower wavelength missions are

possible today, but significant improvements were required to satisfy optical telescope

parameters.

2.4.3 Finite Element Modeling. The use of specialized finite

element codes were necessary due to the inherent modeling problems in inflatable

membranes. As the thickness decreases, either the material’s extremely low bending

stiffness causes numerical locking problems, or the number of degrees of freedom grow

so large as to make a solution inaccurate or even unattainable. What is desirable

is a finite element solution method which can overcome these standard limitations,

while maintaining the nonlinear nature of the mechanics modelled.
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Mohan presented a geometrically nonlinear finite element formulation for static

and dynamic analysis (50). Results correlated favorably with ABAQUS model pre-

dictions, but the calculations were not computationally expensive due to the sim-

plicity of the formulation.

Karnaukhov discussed a finite element method for a material with thermoelec-

troviscoelastic (TEVE) properties (51). Thermal, electrical and mechanical equa-

tions of equilibrium were presented and linearized for use in solving non-linear prob-

lems. A method to determine damping and dynamic coupling coefficients was also

derived. Elsami developed a finite element procedure for thermoelastic shells of elas-

ticity under thermal shock (52). Integrated piezoelectric material modeling must

allow simultaneous modeling of all three properties.

2.4.3.1 Piezoelectric Materials. Piezoelectric materials hold

interesting properties which may provide an answer for some of the problems cur-

rently facing the designers of inflatable space structures. Two brothers, Pierre and

Jacques Curie, are credited with the discovery in 1880 that some materials will

generate a change in electric field when pressure is applied. Hankel further refined

the research and termed the effect ‘piezoelectricity,’ recognizing the different affects

thermal and mechanical deformation had on these materials (53). When a mechan-

ical force is applied to a piezoelectric material, and an electric charge is generated,

this in known as the direct piezoelectric effect. These materials will also produce a

mechanical force when an electrical charge is applied. This effect is known as the

converse piezoelectric effect (54). While much research has been accomplished with

regards to using the direct piezoelectric effect for dynamic behavior identification,

this research concentrates only on the converse piezoelectric effect, as the material

was used primarily as an actuation device.
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The linear constitutive equations for piezothermoelasticity can be defined as:

{T} = [c] {S} − [e]T {E} − {λ}∆tp, (2.1)

{D} = [e] {S} − [ε] {E} − {p}∆tp, (2.2)

{λ} = [s]−1 {γ}, (2.3)

where {T} is the stress vector, [c] is the elastic moduli matrix, [e] is the piezoelectric

constant matrix, {E} is the electric field vector, ∆tp is the temperature change,

{D} is the electric displacement vector, {S} is the mechanical strain vector, [ε] is

the dielectric constant matrix, {p} is the pyroelectric constant, [s] is the elastic

compliance matrix, and {γ} is the coefficient of thermal expansion.

The coefficients contained within [c], [e], [ε], {p}, [s], and {γ} have been exper-

imentally attained for the various materials which have been observed to exhibit the

piezoelectric phenomena. Early research concentrated on those materials found in

nature such as crystals. Later, polymer-based materials were created which exhibited

these piezoelectric qualities. PVDF is such a material.

There are various class definitions covering all discovered piezoelectric materi-

als. Whether crystal or polymer in nature, the molecular makeup of the substance

is categorized, sometimes allowing simplification of the equations used in analysis.

PVDF (or PVF2) is classified as a class C6v piezoelectric material, where the elastic

moduli matrix is of the form:

[cij] =




c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66




(2.4)
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c11 =
E

1− ν2

c12 =
Eν

1− ν2

c66 = 1/2 (c11 − c12)

=
E

2 (1 + ν)

where E is Young’s modulus and ν is Poisson’s ratio. Note, for thin shells, c13,

c33, and c44 are usually neglected since through-the-thickness stress can usually be

neglected. The piezoelectric constant, [e], and the dielectric constant, [ε], are defined

as:

[eij] =




0 0 0 0 e15 0

0 0 0 e15 0 0

e13 e13 e33 0 0 0


 , (2.5)

[εij] =




ε11 0 0

0 ε11 0

0 0 ε33


 . (2.6)

Equations 2.4-2.6, used in Equations 2.1-2.3 can be used as the basic constitu-

tive equations for the development of some preliminary finite element modeling of a

piezoelectic laminated membrane mirror.

2.4.3.2 Piezoelectric Laminates. The previous finite element

methods assumed isotropic elastic properties, and must be modified if applied to

a piezoelectric laminate which may exist in an inflatable space structure. Salama

showed that surface accuracy of on-orbit inflatable antennas could be increased using

piezo-film (55). Shape correction was modelled and experimentally assessed for both

inflated tubes and pressurized membranes. Analysis relied on nonlinear NASTRAN

procedures and Hencky assumptions. Since NASTRAN provides only thermal and

elastic degrees of freedom, the piezoelectric effects were modelled as thermal effects.
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Piezo-actuation was implemented through edge condition, in-plane membrane strain,

and moment generation application. Each mechanism is discussed independently,

along with its effectiveness. Non-piezo design testing indicated model predictions

were approximately 10% too stiff, attributed to poor knowledge of Mylar’s elastic

modulus. The piezo-actuated designs proved far too error-prone to yield quantita-

tive results, but qualitative indications imply shape control of these structures was

possible using piezo-films. These errors are again attributed to the poorly known

material properties.

Dökmeci presented a more complete dynamic theory for problems involving

coated laminae in which there exists electrical, thermal and mechanical coupling.

Each layer is assumed to to have uniform thickness, curvature and electromechanical

properties. Three-dimensional linear fundamental equations of thermopiezoelectric-

ity are presented and applied through Mindlin’s variational theorem to develop a

system of equations: Macroscopic stress equations of motion; macroscopic charge

equations of electrostatics; macroscopic equations of heat conduction; mechanical,

electrical and thermal boundary conditions as well as initial conditions.

Sun presented a piezoelectric composite laminate theory (56). Thickness was

assumed to remain constant, in-plane displacements were assumed linear in nature,

the constitutive relations were linear and linear finite deformation was assumed.

Tzou discussed linear finite element theory applied to a thin plate with inte-

grated distributed piezoelectric sensor/actuators (54, 57). A new piezoelectric finite

element was developed and integrated into the overall plate model. Vibration control

was studied through the implementation of different control strategies. Temperature

effects, while commented upon, were not included.

Tzou also presented thorough mechanics development of a distributed piezo-

electric thick shell system (58, 59). Thermal effects, transverse shear and rotatory

inertia were included, and simplifications were presented for use in thin shells and

plates. Further development resulted in a geometrically non-linear piezothermoelas-
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tic laminate theory (60). Constitutive relations include mechanical, electrical and

thermal excitations. Non-linear system equations assuming large deformations were

presented, but transverse shear deformation and rotatory inertia were not considered.

These theories, while complete and useful for their purposes, do not directly

aid in the analysis of large inflatable optical membranes. They encounter numerical

limitations identical to standard finite elements. Analytical solutions of some pre-

viously unsolvable systems have been found by applying perturbation theory. Any

analytical solution to the non-linear problems previously referred to have made use of

perturbation methods to arrive at a solution. The finite element solutions, however,

have not.

2.4.3.3 Variational-Asymptotic Theory. The Variational-

Asymptotic (VA) method merges these methodologies to arrive at solutions with

greater efficiency. Berdichevsky’s theory behind VA has been used to solve structural

analysis problems (61). He applied this perturbation approach to a physically and

geometrically non-linear theory of shells.

Cesnik applied the VA method to a composite beam (62, 63). A geometrically

nonlinear theory for composite beams was developed. Using “shape functions” for

through-the-thickness variations, a better approximation to the property variations

within the beam is predicted. The results correlated well with known exact solutions.

Lee applied the VA method to a laminated plate (64). Using laminated plate

theory, a two-dimensional theory is derived from general three-dimensional analysis.

The “shape functions” again provide through-the-thickness variation approximation.

This research does not apply the VA method. But realizing the advantage

perturbation techniques can have when applied to certain problems, a new math-

ematical approach, rooted in basic perturbation methods, is presented as another

useful tool for the analyst. The Method of Integral Multiple Scales (MIMS), while

providing valid analytical solutions, provides a solid mechanism for computational
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solutions. Through the application of finite element derivation, nonlinear systems

represented by their Lagrangian can be solved.

To develop this method, analytical solutions were developed. Initial insight is

gained through the relatively simple beam-string in Chapter III. This one-dimensional

system represents a cut-away of a non-linear optical membrane. A comprehensive

mechanics derivation of the equations of motion governing the behavior of a beam

constructed of electro-thermo-elastic materials results in a coupled nonlinear system

which, through the creative application of perturbation techniques, can be solved.

Applying this methodology to the two dimensional system of interest, the

derivation of the nonlinear equations of motion governing the laminated circular

membrane are developed in Chapter IV . A simplified axisymmetric solution is

created using the same methodology developed for the beam-string.

With the nonlinear analytic solutions in hand, MIMS is introduced in Chapter

V. Through the presentation of a simple, linear example, MIMS is explained and

argued. MIMS is then applied in Chapter VI to the nonlinear systems analyzed in

Chapters III and IV. This method can then be used to improve analysis capabilities

toward more effective inflatable space structure design.

2-15



www.manaraa.com

III. Piezothermoelastic Beams
The design and implementation of an active membrane requires a new set of

analytical tools. A finite element modeling capability providing thermal, electri-

cal and mechanical evaluation would be of great utility. Analytical results using

asymptotic methods will also be used to provide a necessary initial validation. The

complexity involved in the analysis of a membrane can be better understood through

the evaluation of a simpler one-dimensional beam model. This chapter represents

the asymptotic solution for a piezoelectric laminated beam undergoing moderate

deformation.

3.1 Laminated Piezothermoelastic Beam-String

A membrane mirror can be created using a membrane material, such as Up-

ilex, metalized on one side to provide the necessary reflective surface. Applying a

laminate of Polyvinylidine Flouride (PVDF) layers on the non-reflective side, an ac-

tive membrane reflector can be constructed. PVDF is a piezoelectric polymer which

strains when an electrical potential is applied across the thickness. In general this

effect is orthotropic, resulting in much smaller effects in the transverse direction,

but bidirectional PVDF is also available. Additionally, two layers of PVDF can

be layered and, applying opposite electrical potential, used to produce a bimorph

effect. As the two layers strain differently, curvature results. Applying a single

layer of PVDF to Upilex and applying a time periodic electrical potential near the

composite membrane’s natural frequency produces significant deformation. Due to

the directional properties of PVDF, a laminate of angled layers is being considered

to provide desired controllability for a two-dimensional membrane surface. A one-

dimensional ‘beam’ solution can provide valuable insights for the development of the

more complex two-dimensional solution.
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Figure 3.1 Pressurized Beam Deflection

3.2 Equations of Motion

To develop the necessary fundamental equations used in this analysis, an

energy-based derivation is used. Refer to Figures 3.1 and 3.2 throughout the fol-

lowing derivation. The potential energy of an elastic beam can be defined over the

volume (V) using the strain energy representation (65):

V =

∫

V

1

2
{ε}T{σ} − {ε}T{σ0}+ {ε0}T{σ}dV

+
1

2
K0w,x(0, t)

2 +
1

2
KLw,x(L, t)

2

(3.1)

with

σ = [E]{ε} σ0 =
Ni

A
(3.2)

ε =
ds− dx

dx
− zw,xx ε0 = αT +

d31V

H
(3.3)

where ε is strain in the beam, σ is stress equal to the strain multiplied by the mate-

rial’s modulus (E), ε0 is prestrain resulting from thermal or piezoelectric actuation,
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σ0 is the prestress resulting from any initial axial load (Ni) across the cross-sectional

area (A) and H is the laminate thickness. The addition of the spring constants

(K0 and KL) at each end of the beam allows for variable boundary conditions used

later in the analysis. Throughout this document, all variables after a comma in the

subscript indicates the derivative with respect to that variable. Neglecting rotatory

inertia, the beam’s kinetic energy can be represented as

T =
1

2

∫

V
ρ
(
u2,t + w2,t

)
dV . (3.4)

where ρ is the beam’s density. The axial and transverse deflections are represented

as u and w respectively. The system’s non-conservative work is a result from the

follower pressure force and can be approximated as

Wnc = −
∫

x

P (w + u,xw − w,xu) dx. (3.5)

To analyze a laminate, further development is required. Referring to Figure

3.2, each layer can have independent elastic, thermal, and piezoelectric properties.

Assuming through-the-thickness strain is constant at any cross-section, the system

can be collapsed into a one-dimensional integrodifferential system using

ρA =

∫

A

ρdA =
∑∫

zi

ρidz Nz =

∫

A

Ni

A
zdA =

∑∫

zi

Ni

H
zdz

EA =

∫

A

EdA =
∑∫

zi

Eidz N0 =

∫

A

Ni

A
dA =

∑∫

zi

Ni

H
dz

EAε =

∫

A

Eε0dA =
∑∫

zi

Eiε0idz EAεz =

∫

A

Eε0zdA =
∑∫

zi

Eiε0izdz

EI =

∫

A

Ez2dA =
∑∫

zi

Eiz
2dz EAz =

∫

A

EzdA =
∑∫

zi

Eizdz (3.6)

by integrating through each laminate layer i. Applying Hamilton’s principle

∫ t2

t1

δT− δV + δWncdt = 0, (3.7)
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Figure 3.2 Piezoelectric Laminate Cross Section

where δ indicates variation, to this system, the following dimensional system is de-

rived

ρAu,tt − EAu,xx =
1

2
(EA−N)

∂

∂x

(
w2,x − 2u,xw

2
,x

)
− 2Pw,x

− EAz
∂

∂x

[
w,xx

(
1− 1

2
w2,x + u,xw

2
,x

)]
,

(3.8)

ρAw,tt −Nw,xx + EIw,xxxx =(EA−N)
∂

∂x
(ew,x) + P (1− 2u,x)

− EAz
∂

∂x

[
u,xx

(
1− 1

2
w2,x + u,xw

2
,x

)]
,

(3.9)

e = u,x − u2,x +
1

2
w2,x, (3.10)

N = Ni − EAε, (3.11)

with the following moment balance boundary conditions

EIw,xx −Nz + EAεz =

KLw,x + EAz

(
u,x +

1

2
w2,x −

1

8
w4,x −

1

2
u,xw

2
,x +

1

2
u2,xw

2
,x

) ∣∣∣∣
x=L

(3.12)

EIw,xx −Nz + EAεz =

−K0w,x + EAz

(
u,x +

1

2
w2,x −

1

8
w4,x −

1

2
u,xw

2
,x +

1

2
u2,xw

2
,x

) ∣∣∣∣
x=0

.
(3.13)
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If all measurements are with respect to the original neutral axis of a symmetric

laminate (Nz, EAz → 0), Equations 3.8 and 3.9 are the same as presented by Nayfeh

(66) with additional pressure terms. Notice, the thermal and piezoelectric terms not

only modify the axial tension within the beam (i.e. EAε), but also produce moments

at the boundary (i.e. EAεz).

To properly perform a perturbation analysis of this system, the system must

be put in nondimensional form. The following nondimensional parameter scaling

rules are used herein:

x̂ =
x

L
ẑ =

z

L

û =
u

L
ŵ =

w

L

r̂2 =
EI

L2EA
η P̂ =

PL

EA
η

N̂0 =
1

η
N̂z =

Nz

LEA
η (3.14)

ÊAz =
EAz
LEA

η ÊAεz =
EAεz
LEA

η

K̂1 =
KL

LEA
η K̂0 =

K0

LEA
η

ÊAε =
EAε
EA

η t̂2 =
c22
L2
t2

where η =
c21
c22
, with c1 =

√
EA
ρA

and c2 =
√

N0

ρA
being the longitudinal and transverse

speeds of sound in the beam, to produce (eliminating the ‘hats’):

u,tt − ηu,xx =− 2νu,t +
1

2
(η − 1 + EAε)

∂

∂x

(
w2,x − 2u,xw

2
,x

)

− 2Pw,x − EAz
∂

∂x

[
w,xx

(
1− 1

2
w2,x + u,xw

2
,x

)] (3.15)

w,tt − (1− EAε)w,xx + r2w,xxxx = −2µw,t + (η − 1 + EAε)
∂

∂x
(ew,x)

+ P (1− 2u,x)− EAz
∂

∂x

[
u,xx

(
1− 1

2
w2,x + u,xw

2
,x

)] (3.16)

3-5



www.manaraa.com

e = u,x − u2,x +
1

2
w2,x (3.17)

with the following boundary conditions

r2η2w,xx −Nz + EAεz + K̂0w,x =

EAz

(
u,x +

1

2
w2,x −

1

8
w4,x −

1

2
u,xw

2
,x +

1

2
u2,xw

2
,x

) ∣∣∣∣
x=0

(3.18)

r2η2w,xx −Nz + EAεz − K̂Lw,x =

EAz

(
u,x +

1

2
w2,x −

1

8
w4,x +

1

2
u,xw

2
,x +

1

2
u2,xw

2
,x

) ∣∣∣∣
x=1

(3.19)

where ν and µ are added damping terms for the axial and transverse directions,

respectively. The system is now normalized in time to the fundamental transverse

frequency of the beam. Notice, the normalized axial frequency is the ratio of the

transverse and axial speeds of sound. Since c2
c1

=
√

N0

EA
, we can see the direct result

the pretension causes when applied in a perturbation expansion.

Now, defining all measurements from the neutral axis, thus eliminating the

Nz terms, and applying perturbation techniques, a system of linear equations can

be developed. The solution presented was developed using a combination of three

standard perturbation techniques: Lindstedt-Poincaré, Multiple Time Scales, and

Matched Asymptotic Expansions (67). Using the following expansions:

τ = ωt

Tn = εnτ

ω = ω0 + εω1 + ε2ω2 + . . .

w(x, τ ; ε) = ε2w2(x, τ) + ε3w3(x, τ) + ε4w4(x, τ) + . . .

u(x, τ ; ε) = ε3u3(x, τ) + ε4u4(x, τ) + ε5u5(x, τ) + . . . (3.20)

D = D0 + εD1 + ε2D2 + . . .

ε = r
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where Di =
∂
∂Ti

, and ω0 = 1 in this problem, we simultaneously apply Lindstedt-

Poincaré and Multiple Time Scale methods. Applying the expansions in Equation

3.21 and the scaling rules in Equation 3.15 to the system of linear partial differential

equations, we can expand the original nonlinear system. Experimental results have

shown the transverse deflection is on the order of optical wavelengths, indicating the

small initial order (∼ ε2), is acceptable (17). The axial deflection is expected to be

much smaller than the transverse and is scaled as such.

The matched asymptotic expansion method using multiple scales (67) is also

used to develop a solution which illustrates the string-like behavior in the center of

the beam, with small boundary layers which act as a beam.

Applying the expansions (Equations 3.21) to Equations 3.15 through 3.17, then

extracting equations based on the relative order, the following system of equations

are derived for the ‘outer’ solution related to the center portion of the beam string

(numerical subscripts attached to physical properties indicate assigned order):

u3,00 − ηu3,xx = 0 (3.21)

u4,00 − ηu4,xx = −2u3,01 − 2ω1u3,00 − 2ν1u3,0 − 2P2w2,x

+
1

2
(η − 1)

(
w22,x

)
,x
− EAz2w2,xxx (3.22)

u5,00 − ηu5,xx = −2u4,01 − 2ω1u4,00 − 2ν1u4,0 − 2P2w3,x

−2u3,02 − u3,11 − 4ω1u3,01 −
(
ω21 + 2ω2

)
u3,00

−2ν1u3,1 − 2ω1ν1u3,0 + η (w2,xw3,x),x − EAz2w3,xxx (3.23)
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w2,00 − w2,xx = P2 (3.24)

w3,00 − w3,xx = −2w2,01 − 2ω1w2,00 − 2µ1w2,0 (3.25)

w4,00 − w4,xx = −w2,11 − 2w2,02 − 4ω1w2,01 −
(
ω21 + 2ω2

)
w2,00 − 2µ1w2,1

−2ω1µ1w2,0 − 2w3,01 − 2ω1w3,00 − 2µ1w3,0

−EAε2w2,xx − w2,xxxx. (3.26)

These equations indicate in the ‘outer’ region of the beam, which is the dominant

center portion, the dynamic shape of the beam appears as a string.

Next stretch the x dimension near one end (first at x = 0,) to create the ‘inner’

solution near that end of the beam. Applying the stretched variable ξ = x
ε
, the

following system is derived for the region near the x = 0 end of the beam

−ηu3,ξξ =
1

2
(η − 1)

(
w22,ξ

)
,ξ
− EAz2w2,ξξξ (3.27)

−ηu4,ξξ = (η − 1) (w2,ξw3,ξ),ξ − EAz2w3,ξξξ (3.28)

−ηu5,ξξ = −u3,00 − 2P2w2,ξ +
1

2
(η − 1)

(
w23,ξ + 2w2,ξw4,ξ − 2u3,ξw

2
2,ξ

)
,ξ

+
1

2
EAε2

(
w22,ξ

)
,ξ
− EAz2

(
w4,ξξ −

3

2

(
w2,ξ

3
)
,ξ

)
(3.29)

w2,ξξξξ − w2,ξξ = 0 (3.30)

w3,ξξξξ − w3,ξξ = 0 (3.31)

w4,ξξξξ − w4,ξξ = P2 − w2,00 + EAε2w2,ξξ − EAz2u3,ξξξ

+(η − 1)

(
u3,ξw2,ξ +

1

2
w32,ξ

)

,ξ

. (3.32)
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These equations indicate beam-like behavior near the end. Similarly, the ‘inner’

expansions for the other end (x = 1) of the beam can be derived using the stretching

transform ζ = 1−x
ε
:

−ηu3,ζζ = −1

2
(η − 1)

(
w22,ζ

)
,ζ
+ EAz2w2,ζζζ (3.33)

−ηu4,ζζ = − (η − 1) (w2,ζw3,ζ),ζ + EAz2w3,ζζζ (3.34)

−ηu5,ζζ = −u3,00 + 2P2w2,ζ −
1

2
(η − 1)

(
w23,ζ + 2w2,ζw4,ζ + 2u3,ζw

2
2,ζ

)
,ζ

−1

2
EAε2

(
w22,ζ

)
,ζ
+ EAz2

(
w4,ζζ −

3

2

(
w32,ζ

)
,ζ

)

,ζ

(3.35)

w2,ζζζζ − w2,ζζ = 0 (3.36)

w3,ζζζζ − w3,ζζ = 0 (3.37)

w4,ζζζζ − w4,ζζ = P2 − w2,00 + EAε2w2,ζζ + EAz2u3,ζζζ (3.38)

− (η − 1)

(
u3,ζw2,ζ −

1

2
w32,ζ

)

,ζ

. (3.39)

This system, represented by string equations in the ‘outer’ region and beam

equations in the ‘inner’ regions, is linear with respect to the unknown variable at all

levels, self-adjoint, and can be solved. Since the membrane may be mounted using

an elastic ring, a torsional spring boundary condition appears more accurate than a

clamped condition. This model can also represent a region between the edge of the

membrane and the beginning of the piezoelectrically actuated region. This also may

provide an additional control mechanism. Scaling and expanding these dimensional
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boundary conditions

u(0) = 0

u,x(0) = 0

w(0) = 0 (3.40)

EIw,xx(0) =Nz − EAεz −K0w,x(0)+

EAz

(
u,x +

1

2
w2,x −

1

8
w4,x −

1

2
u,xw

2
,x +

1

2
u2,xw

2
,x

)

u(L) = 0

u,x(L) = 0

w(L) = 0 (3.41)

EIw,xx(L) =Nz − EAεz +KLw,x(L)−

EAz

(
u,x +

1

2
w2,x −

1

8
w4,x −

1

2
u,xw

2
,x +

1

2
u2,xw

2
,x

)

using the same scaling previously presented, the following non-dimensional boundary

conditions are derived for the x = 0 end of the beam

u3(0) = 0 u3,ξ(0) = 0

u4(0) = 0 u4,ξ(0) = 0

u5(0) = 0 u5,ξ(0) = 0

w2(0) = 0 N 2
0w2,ξξ(0) = −K0w2,ξ(0)

w3(0) = 0 N 2
0w3,ξξ(0) = −K0w3,ξ(0)− EAεz3

w4(0) = 0 N 2
0w4,ξξ(0) = −K0w4,ξ(0) + EAz2u3,ξ.

(3.42)
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The opposite end, x = L, boundary conditions become

u3(0) = 0 u3,ζ(0) = 0

u4(0) = 0 u4,ζ(0) = 0

u5(0) = 0 u5,ζ(0) = 0

w2(0) = 0 N 2
0w2,ζζ(0) = −K1w2,ζ(0)

w3(0) = 0 N 2
0w3,ζζ(0) = −K1w3,ζ(0)− EAεz3

w4(0) = 0 N 2
0w4,ζζ(0) = −K1w4,ζ(0) + EAz2u3,ζ .

where it can now be seen that EAεz3 represents the non-dimensional moment imposed

by the piezoelectric layer(s), and Nz = 0 using the neutral axis as the datum. This

research is concerned with both the dynamical properties of this material as well as

its static shape manipulation capabilities. First, to study the shaping capabilities of

the system, the static solution is considered.

3.3 Static Shaping

Noticing the system is now separated, the axial solution (u) is completely

determined by lower order transverse solutions (w). We can solve the system of

equations, using a two level matching, to find the following composite solution to

order ε3

uc(x) = 0

wc(x) = ε2
P2
2

(
x− x2

)
− ε3

[
Γ0
(
1− x− e−

x
ε

)
+ Γ1

(
x− e−

1−x
ε

)]
(3.44)
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Property Kapton PVDF
Modulus, E 2.8 GPa 1.8 GPa
Thickness, H 100 micron 50 micron
Piezo Stress, d 2.76x10−7C/in2

Table 3.1 Material Properties

where

Γ0 =
K0

K0 −N2
0

[
P2
2

+
EAεz3
K0

]

Γ1 =
K1

K1 −N2
0

[
P2
2

+
EAεz3
K1

]
. (3.45)

From this solution, we can see the axial distortion is not present to order ε3.

We will neglect the axial displacement to this level since the ‘smallness’ factor can

be roughly the ratio of thickness to length of the membrane. As a note, the axial

displacement equation is not trivial at the next order.

Figure 3.3 illustrates the behavior of the piezoelectric laminate beam with no

pressure differential and symmetric edge conditions. Using a 15 cm long, simple

3 layer laminate with the base layer of Kapton, and two layers of PVDF with the

properties listed in Table 3.1, reasonable environmental and actuation values can be

applied to yield interesting results.

Actuation causes a pistoning of the center portion of the beam a total of

approximately ten wavelengths of visible light (λ ∼ 600nm). This corresponds fa-

vorably with experimental observations (17). The effective boundary layer region is

approximately of the order of
√
ε, as expected from the original mathematical foun-

dation. Because the center ‘outer’ region of the beam behaves as a string, incapable

of countering any bending moment, this region can only produce a linear contribu-

tion. With the ‘inner’ regions providing the necessary bending stiffness to counter
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(a)

(b)

Figure 3.3 Unpressurized Piezoelectric Beam Deflection: (a)Positive Voltage Ef-
fects (b)Negative Voltage Effects
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Figure 3.4 Asymmetric Edge Control Effects (Unpressurized Beam)

the piezo moment applied, these boundary regions illustrate significant curvature

changes.

Results from applying dissimilar edge stiffness values are shown in Figure 3.4.

Using a combination of edge control and piezoelectric laminate actuation, a reflected

wavefront can be modified by ten wavelengths of tilt (λ ∼ 500nm). Again notice

the boundary regions are the same magnitude as the symmetric case previously

discussed.

If the beam has a small pressure differential applied, similar results are possible.

Symmetric edge conditions and actuation results in additional curvature alteration

(see Figure 3.5). The solid line represents the actual surface deflection given the ap-

plied conditions, whereas the dashed line indicates the effective surface change due

to the applied piezo effect. In this case, the wavefront modification again produces

a plunging effect. As an additional note, different edge conditions result in addi-
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(a)

(b)

Figure 3.5 Pressurized Piezoelectric Beam Deflection (Dashed Line Represents
Piezoelectric Effect): (a) Positive Voltage Effects (b) Negative Volt-
age Effects
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tional tilt behavior as seen in the non-pressurized system. With the static shaping

capabilities understood, interest lies in the dynamic nature of the laminate.

3.4 Dynamic Response

As discussed in the previous section, the axial equations (u) are decoupled from

the transverse equations (w) when the system is scaled and expanded. Solving the

system of equations at order ε2, and eliminating any terms linear in time, yields a

simple string:

wc2(x) =
P2
2

(
x− x2

)
+

∞∑

i=1

a1n(T1)
(
eiβn0(T0+x) − eiβn0(T0−x) + cc

)
(3.46)

where βn0 = nπ and a1n(T1) can be a function of T1, T2, . . ., and is yet to be de-

termined. We now concentrate on the solution for next level of equations at order

ε3. Since this system is self-adjoint, we apply the Fredholm Alternative Theorem

to derive the necessary solvability conditions. As a result, the a1n(T1) coefficients

in Equation 3.46 as well as ω1 can be determined based on the applied boundary

conditions.

We will concern ourselves with two different conditions: constant and periodic

forcing. The forcing is applied through the thermal and electrical parameters:

EAε2 = f0 + fsin[(Ω + εδ)t]

= f0 + fsin(ΩT0 + δT1)

EAεz3 = m0 +msin[(Ω + εδ)t]

= m0 +msin(ΩT0 + δT1) (3.47)

where Ω will be considered a modal frequency, and δ is a small detuning parameter.

Herein two values of Ω: βj0, 2βj0, which represent odd and even modes, are examined.

To the order studied, these selections represent a complete set of possible solutions.
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Applying the solvability conditions which effectively requires cancellation of all

modes existing in 3.46 results in the following:

ω1 = −
1

βn0
(δ − iµ1) (3.48)

and

a1k = 0 (k 6= j)

= A1ke
iδT1 (k = j) . (3.49)

where

A1k = −
m

2βk0

[
(K1 −N2

0 )− (−1)k (K0 −N2
0 )

K1 (K0 −N2
0 ) +K0 (K1 −N2

0 )

]
. (3.50)

It is now clear, with symmetric boundary conditions, only the single odd mode exists

at this level. The solution for the next level transverse displacement is

wc3(x) = −P2
2

[
K0

K0 −N2
0

] (
1− x− e−ξ

)

−P2
2

[
K1

K1 −N2
0

] (
x+ e−ζ

)
(3.51)

−a1kβj0
[

K0

K0 −N2
0

e−ξ − (−1)k K1

K1 −N2
0

e−ζ
]
sin(βj0T0)

−m
[

1

K0 −N2
0

e−ξ − (−1)k 1

K1 −N2
0

e−ζ
]
sin(βj0T0 + δT1)

+
∞∑

i=1

(
a2n(T1)e

iβn0(T0+x) + a3n(T1)e
iβn0(T0−x) + cc

)
.

As in the static solution, the axial displacement solution is trivial to this level, and

neglected in this analysis.

Continuing with the next level, we can derive the necessary solvability con-

ditions which require cancellation of all modes existing in both the previous levels.
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The results of interest are:

ω2 = 1
β2
n0

(µ21 + 2δ2 + β4n0 − f0β
2
n0) (Ω = βj0)

= 1
β2
n0

(
µ21 + 2δ2 + β4n0 − f0β

2
n0 − f

2
β2n0e

iδT1
)

(Ω = 2βj0)
(3.52)

and

a2k = 0 (k 6= j)

a2k = A2ke
iδT1 (k = j)

a3k = −ā2k.

where

A2k = −
fP2
2β2k0

− i
m

K0 −N2
0

[
1−K0

(
(K1 −N2

0 )− (−1)k (K0 −N2
0 )

K1 (K0 −N2
0 ) +K0 (K1 −N2

0 )

)]
. (3.54)

Applying these results, and the original scaling used, we can derive the dimen-

sional results. Assuming an odd driving frequency (n = odd), the modal frequency

for the beam-string is now:

βn = (nπ + δ)ω∗
n

(√
N

ρAL2

)
(3.55)

where

ω∗
n = 1− ε

δ

nπ
+ ε2

1

2(nπ)2
(
µ21 + 2δ2 + (nπ)4 − f0(nπ)

2
)

(3.56)

which illustrates the difference (to this level) of the piezothermoelastic beam-string

frequencies from the standard string frequencies: βn=nπ
√

N

ρAL2 .

Maximum deflection per volt applied to the laminate described here is pre-

sented in Figure 3.6. As we select the higher modes, the resultant deflection becomes

less. Figure 3.7 illustrates the dynamic behavior of the beam-string through its first

five natural modes. The solid line indicates the actual beam deflection, while the

dashed line quantifies the actual change from the static position. The center portion

behaves much like a string, while the ends maintain the stiffness associated with
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Figure 3.6 Maximum Dynamic Deflection

beams. As expected, the even modes are much less prominent due to the symmetric

conditions.

The development of the perturbation solution of the nonlinear equations of

motion derived in this chapter provides a solution for slender, flexible, laminated

beams made of piezothermoelastic material. The results illustrate the effectiveness

of a Kapton/PVDF beam at optical wavelengths. Further development into two

dimensions is continued in the next chapter.
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Figure 3.7 Mode Shape Results
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IV. Piezothermoelastic Plates
The previous chapter presented the analytical solution of a non-linear dynamic

piezoelectric laminated beam-string. Using perturbation methods, a solution was

developed assuming the beam’s length was much larger than its width. This chapter

expands this methodology to study a circular plate with a very small thickness to

radius ratio.

4.1 Laminated Piezothermoelastic Plate-Membrane

To develop the necessary fundamental equations used in this two-dimensional

analysis, again, an energy-based derivation is needed. The potential energy of an

elastic, circular plate (radius=R) can be defined using the strain energy representa-

tion (65):

V =

∫

V

1

2
{ε}T{σ} − {ε}T{σ0}+ {ε0}T{σ}dV +

1

2
K(θ)w,r(R, t)

2 (4.1)

with

ε0 = αT + d31V
t

σ0 =
Ni

A
(4.2)

σ = [E]{ε}

(4.3)

where ε0 is prestrain resulting from thermal or piezoelectric actuation, σ0 is the

prestress resulting from any initial axial load (Ni) across the cross-sectional area

(A), ε is the strain field in the plate, and σ is stress, equal to the product of strain
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and the material’s modulus matrix when in a state of plane stress:

[E] =
E

1− ν2




1 ν 0

ν 1 0

0 0 1
2
(1− ν)


 (4.4)

where E is the material’s Young’s Modulus, and ν is the material’s Poisson’s ratio.

The addition of the spring constant (K(θ)) at the edge of the plate allows for variable

boundary conditions.

The general strain formula in a cylindrical coordinate frame of the neutral

plane in the state of plane stress, neglecting in-plane quadratic terms, is (68)

ε =




u,r +
1
2
w2,r

u
r
+ 1

r
v,θ +

1
2
1
r2
w2,θ

1
r
u,θ + v,r − v

r
+ 1

r
w,θw,r


 , (4.5)

where, if we assume plane sections remain plane during deformation, a representation

of the strain field through the laminate can then be derived as

ε =




εrr

εθθ

γrθ


 =




u,r +
1
2
w2,r − zw,rr

u
r
+ 1

r
v,θ +

1
2
1
r2
w2,θ − z

[
1
r2
w,θθ +

1
r
w,r
]

1
r
u,θ + v,r − v

r
+ 1

r
w,θw,r − 2z

[
1
r
w2,rθ − 1

r2
w,θ
]


 . (4.6)

Applying Equation 4.6 to Equation 4.1, the system’s potential energy can be

derived:

V =

∫

V

E

2(1− ν2)

[
ε2rr + 2εrrεθθ + ε2θθ + (1− ν)γ2rθ

]

+ σ0rεrr + σ0θεθθ + σ0rθγrθ dV +
1

2
K(θ)w,r(R, t)

2

(4.7)
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Neglecting rotatory inertia, the plate’s kinetic energy can be represented as:

T =
1

2

∫

V
ρ
(
u2,t + v2,t + w2,t

)
dV (4.8)

where ρ is the plate’s density. The radial, in-plane ‘cross-track’ and out-of-plane

‘transverse’ deflections are represented as u, v and w, respectively.

To analyze this laminate, further development is required. As in Chapter

III, each layer can have independent elastic, thermal, and piezoelectric properties.

Again, elastically isotropic materials in each layer are assumed. Assuming through-

the-thickness strain is constant at any cross-section, the system can be collapsed into

a one-dimensional integrodifferential system using

ρh =
∫
z
ρdz =

∑∫
zi
ρidz

Nrz =
∫
z
σ0r(A)zdz =

∑∫
zi
σ0r(A)zdz

EH =
∫
z

E
1−ν2dz =

∑∫
zi

Ei

1−ν2
i

dz

Nr =
∫
z
σ0r

A
dz =

∑∫
zi
σ0ri

A
zdz

Nθ =
∫
z
σ0θ

A
dz =

∑∫
zi
σ0θi

A
zdz

Nrθ =
∫
z
σrθ
A
dz =

∑∫
zi
σ0rθi

A
zdz

EHεr =
∫
z

E
1−ν2 εrdz =

∑∫
zi

Ei

1−ν2
i

εridz

EHεθ =
∫
z

E
1−ν2 εθdz =

∑∫
zi

Ei

1−ν2
i

εθidz

EZε =
∫
z

E
1−ν2 εrzdz =

∑∫
zi

Ei

1−ν2
i

εrizdz

EZ =
∫
z

E
1−ν2 zdz =

∑∫
zi

Ei

1−ν2
i

zdz

D =
∫
z

E
1−ν2 z

2dz =
∑∫

zi
Ei

1−ν2
i

z2dz

(4.9)

4-3



www.manaraa.com

by integrating through each laminate layer i. The resulting equations of motion are

then:

ρhu,tt − EH
1

r

(
[r (er + νeθ)],r +

1

2
(1− ν)erθ,θ − eθ − νer

)
− 1

r
[Nr −Nθ] =

EHz
1

r

(
1

r2
w,θθ +

1

r
w,r

−
[
rw,rr + ν

1

r
w,θθ

]

,r

− (1− ν)

[
1

r
w,rθ −

1

r2
w,θ

]

,θ

)
(4.10)

ρhv,tt − EH
1

r

(
[eθ + νer],θ +

1

2
(1− ν)

[
erθ + (rerθ),r

])
=

EHz
1

r

([
1

r2
w,θθ +

1

r
w,r + νw,rr

]

,θ

+ (1− ν)

[
1

r
w,rθ −

1

r2
w,θ +

(
1

r
w,rθ −

1

r2
w,θ

)

,r

])
(4.11)

ρhw,tt −Nr
1

r
(rw,r),r −Nθ

1

r2
w,θθ − 2Nrθ

1

r
w,rθ +D∇4w =

EH
1

r

(
[rw,r (er + νeθ)],r +

[
1

r
w,θ (eθ + νer)

]

,θ

+
1

2
(1− ν)

[
(w,θerθ),r + (w,rerθ),θ

])

+EZ
1

r

([
(eθ + νer) + rw,r

[
w,rr + ν

(
1

r
w,r +

1

r2
w,θθ

)]

+(1− ν)
1

r
w,θ

(
w,rθ −

1

r
w,θ

)]

,r

+

[
(1− ν)

1

r
erθ +

1

r
w,θ

[
1

r
w,r +

1

r2
w,θθ + νw,rr

]

−(1− ν)
1

r
w,r

(
w,rθ −

1

r
w,theta

)]

,θ

− [r (er + νeθ)],rr +

[
1

r
(eθ + νer)

]

,θθ

+ (1− ν)erθ,rθ

)

(4.12)
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where

∇4 = ∇2∇2

∇2 = ∂2

∂r2
+

1

r

∂

∂r
+

1

r

∂2

∂θ2

(4.13)

er = u,r +
1

2
w2,r

eθ =
u

r
+

1

r
v,θ +

1

2r2
w2,θ

erθ =
1

r
u,θ + v,r +

1

r
v +

1

r
w,rw,θ

(4.14)

Nr = Nir − EHεr − νEHεθ

Nθ = Niθ − EHεθ − νEHεr

Nrθ = Nirθ

(4.15)

with the following boundary conditions of interest:

D

[
rw,rr + ν

(
1

r
w,θθ + w,r

)]
−Nrz + EZε =

K(θ)w,r + EZ [r (er + νeθ)]

∣∣∣∣
r=R

(4.16)

w

∣∣∣∣
r=0

<∞ (4.17)

If all measurements are with respect to the original neutral axis of a symmetric

laminate, then Nrz = 0. Equations 4.10 through 4.12 represent the nonlinear thin

plate equations of motion in cylindrical coordinates. Notice, the thermal and piezo-

electric terms not only modify the in-plane tension within the plate (i.e. EHεr and

EHεθ), but also produce moments at the boundary (i.e. EZε).

To properly perform a perturbation analysis of this system, the system must

be put in nondimensional form. The following nondimensional parameter scaling
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rules are used:

r̂ =
r

R
ẑ =

z

R
η2

û =
u

R
η2 ŵ =

w

Rr∗
η

v̂ =
v

R
η2

r̂∗
2
=

D

R2EH
η2 η2 =

c21
c22

N̂r =
1

η2
N̂rz =

Nrz

REH
η2

N̂θ = N̂r N̂rθ = 0 (4.18)

ÊZ =
EZ

REH
η2 ÊZε =

EZε
REH

η2

K̂(θ) =
K(θ)

REH
η2 t̂2 =

c22
R2
t2

ÊHεr =
EHεr

EH
η2 ÊHεθ =

EHεθ

EH
η2

where c1 =
√

EH
ρh

and c2 =
√

Nr

ρh
are the in-plane and transverse speeds of sound in

the beam, to produce (eliminating the ‘hats’):

u,tt − η2
1

r

(
[r (er + νeθ)],r +

1

2
(1− ν)erθ,θ − eθ − νer

)
=

−2νuu,t + η4(1− ν)
1

r
[EHεθ − EHεr]

+η2EZ
1

r

(
1

r2
w,θθ +

1

r
w,r −

[
rw,rr + ν

1

r
w,θθ

]

,r

− (1− ν)

[
1

r
w,rθ −

1

r2
w,θ

]

,θ

)

(4.19)

v,tt − η2
1

r

(
[eθ + νer],θ +

1

2
(1− ν)

[
erθ + (rerθ),r

])
= −2νvv,t

−η2EZ 1

r

([
1

r2
w,θθ +

1

r
w,r + νw,rr

]

,θ

+ (1− ν)

[
1

r
w,rθ −

1

r2
w,θ +

(
1

r
w,rθ −

1

r2
w,θ

)

,r

])
(4.20)
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w,tt −∇2w + ε2∇4w = −2µw,t

−η2
(
[EHεr + νEHεθ]

1

r
(rw,r) + [EHεθ + νEHεr]

1

r2
w,θθ

)

+
1

r

(
[rw,r (er + νeθ)],r +

[
1

r
w,θ (eθ + νer)

]

,θ

+
1

2
(1− ν)

[
(w,θerθ),r + (w,rerθ),θ

])

+EZ
1

r

([
(eθ + νer) + rw,r

(
w,rr + ν

(
1

r
w,r +

1

r2
w,θθ

))

+ (1− ν)
1

r
w,θ

(
w,rθ −

1

r
w,θ

)]

,r

+

[
(1− ν)

1

r
erθ +

1

r
w,θ

(
1

r
w,r +

1

r2
w,θθ + νw,rr

)

− (1− ν)
1

r
w,r

(
w,rθ −

1

r
w,θ

)]

,θ

− [r (er + νeθ)],rr −
[
1

r
(eθ + νer)

]

,θθ

− (1− ν)erθ,rθ

)

(4.21)

where

er = u,r +
1

2
w2,r

eθ =
u

r
+

1

r
v,θ +

1

2r2
w2,θ

erθ =
1

r
u,θ + v,r +

1

r
v +

1

r
w,rw,θ

(4.22)

with the following boundary conditions :

ηε2
[
rw,rr + ν

(
1

r
w,θθ + w,r

)]
−Nrz + EZε =

ηK(θ)w,r − EZ [r (er + νeθ)]

∣∣∣∣
r=1

(4.23)

w

∣∣∣∣
r=0

<∞ (4.24)
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where νu, νv and µ are added damping terms for the radial, in-plane, and transverse

directions, respectively. The system is now normalized in time to the fundamental

transverse frequency of the plate. Notice, the normalized in-plane frequency is the

ratio of the transverse and in-plane speeds of sound. Since c2
c1

=
√
N0, we can see the

direct result the pretension causes when applied in this perturbation expansion. As

the in-plane wave speed becomes much larger than the transverse wave speed, the

in-plane dynamics decouple from the first level solution.

Defining all measurements from the neutral axis, thus eliminating theNrz term,

and applying perturbation techniques, a system of linear equations can be developed

which, when solved, provide the solution to the original non-linear problem. The

application of interest is a very thin circular plate. The ratio of the radius of gy-

ration to the radial dimension (ε) is very small (< 0.01), which will be the ‘small’

parameter in this analysis. The solution presented was developed using a combina-

tion of three standard perturbation techniques: Lindstedt-Poincaré, Multiple Time

Scales, and Matched Asymptotic Expansions, as in the previous chapter (67). Using

the following expansions

τ = ωt

Tn = εvτ

ω = ω0 + εω1 + ε2ω2 + . . .

u(r, θ, τ ; ε) = ε3u3(r, θ, τ) + ε4u4(r, θ, τ) + ε5u5(r, θ, τ) + . . .

v(r, θ, τ ; ε) = ε3v3(r, θ, τ) + ε4v4(r, θ, τ) + ε5v5(r, θ, τ) + . . .

w(r, θ, τ ; ε) = ε2w2(r, θ, τ) + ε3w3(r, θ, τ) + ε4w4(r, θ, τ) + . . .

D = D0 + εD1 + ε2D2 + . . .

η = ε−1η1

ε = r∗ (4.25)
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where Di =
∂
∂Ti

, and ω0 = 1 in this problem, we simultaneously apply Lindstedt-

Poincaré and Multiple Time Scale methods. Applying the expansions in Equation

4.25 and the scaling rules in Equation 4.18 to the system of linear partial differential

equations, we can expand the original nonlinear system. The axial deflection is

expected to be much smaller than the transverse, and is scaled as such.

The matched asymptotic expansion method using multiple scales (67) is also

used to develop a solution which illustrates the membrane-like behavior in the center

of the plate, with a small boundary layer which acts at the edge of the plate.

Applying the expansions (Equations 4.25) to Equations 4.19 through 4.21, then

extracting equations based on the relative order, the following system of equations

are derived for the ‘outer’ solution related to the center portion of the plate (numer-

ical subscripts attached to physical properties indicate assigned order). Two levels

of in-plane displacement are presented with three levels of transverse displacement

considering the dominance of the transverse motion

1

r
(ru3,r),r−

1

r2
u3 +

1

2
(1− ν)

1

r2
u3,θθ

− 1

r2
v3,θ + ν

1

r
v3,rθ +

1

2
(1− ν)

1

r

(
v3,rθ −

1

r
v3,θ

)
= 0

(4.26)

1

r
(ru4,r),r−

1

r
u4 +

1

2
(1− ν)

1

r2
u4,θθ

− 1

r2
v4,θ + ν

1

r
v4,rθ +

1

2
(1− ν)

1

r

(
v4,rθ −

1

r
v4,θ

)
= − 1

η21
u3,00

−1

2

[(
rw22,r +

1

r
w22,θ

)

,r

+ (1− ν)
1

r2
(w2,rw2,θ),θ

−w22,r − ν
1

r2
w22,θ

]

+
1

r
EZ2

[
w2,θθ +

1

r
w2,r −

(
r2w2,rr + ν

1

r
w2,θθ

)

,r

−(1− ν)

(
1

r
w2,rθ −

1

r2
w2,θ

)

,θ

]

(4.27)
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1

r2
v3,θ−

1

r
v3,rθ +

1

2
(1− ν)

1

r

(
1

r
v3,θv3,rθ

)

+
1

r2
v3,θθ +

1

2
(1− ν)

1

r

[
(rv3,r),r −

1

r
v3

]
= 0

(4.28)

1

r2
v4,θ−

1

r
v4,rθ +

1

2
(1− ν)

1

r

(
1

r
v4,θv4,rθ

)

+
1

r2
v4,θθ +

1

2
(1− ν)

1

r

[
(rv4,r),r −

1

r
v4

]
= − 1

η21
v3,00

−1

2

[(
1

r2
w22,θ + νw22,r

)

,θ

+ (1− ν)
1

r

[
w2,rw2,θ + (w2,rw2,θ),θ

]]

+
1

r
EZ2

[(
1

r2
w2,θθ +

1

r
w2,r + νw2,rr

)

,θ

+(1− ν)

(
1

r
w2,rθ −

1

r2
w2,θ

)
+ r

(
1

r
w2,rθ −

1

r2
wr,θ

)

,r

]

(4.29)

w2,00 −∇2w2 = 0 (4.30)

w3,00 −∇2w3 = −2w2,01 − 2ω1w2,00 − 2µ1w2,0 (4.31)

w4,00 −∇2w4 = −w2,11 − 2w0,02 − 4ω1w2,01

−
(
ω21 + 2ω2

)
w2,00 − 2µ1w2,1

−2ω1µ1w2,0 − 2w3,01 − 2ω1w3,00

−2µ1w3,0 − η21 [EHεr2 + νEHεθ2]
1

r
(rw2,r),r

−η21 [EHεθ2 + νEHεr2]
1

r2
w2,θθ −∇2w2. (4.32)

These equations indicate, in the ‘outer’ region of the plate, the dynamic re-

sponse and shape of the plate appear much as a membrane. Equation 4.30 is the

dynamic equation of motion of a membrane. If we now stretch the radius dimension

near the edge, we can create the ‘inner’ solution near that edge of the plate. No
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boundary layer exists at the center of the plate (r = 0). Applying the stretching

variable ξ = 1−r
ε
, the following system is derived for the stretched region near the

r = 1:

u3,ξξ =
1

2

(
w22,ξ

)
,ξ
+ EZ2w2,ξξξ (4.33)

u4,ξξ = (w2,ξw3,ξ),ξ +
1

2
w22,ξ + u3,ξ +

1

2
(1− ν)v3,ξθ

+EZ2 (w3,ξξξ + 3ξw2,ξξξ + 2w2,ξξ) (4.34)

1

2
(1− ν)v3,ξξ = 0 (4.35)

1

2
(1− ν)v4,ξξ = −1

2
ν
(
w22,ξ

)
,θ
+

1

2
(1− ν)ξv3,ξ + (1 + ν)u3,ξθ

+EZ2(1 + ν)w2,ξξθ (4.36)

w2,ξξξξ − w2,ξξ = 0 (4.37)

w3,ξξξξ − w3,ξξ = −η1
[
w2,ξ

(
u3,ξ −

1

2
w22,ξ

)]

,ξ

+ w2,ξ − w2,θθ + w2,ξξξ (4.38)

w4,ξξξξ − w4,ξξ = −w2,00 − [EHεr2 + EHεθ2]w2,ξξ

−η1
([

w2,ξ (u4,ξ − w2,ξw3,ξ) + w3,ξ

(
u3,ξ −

1

2
w22,ξ

)]

,ξ

+w2,ξ

(
u3,ξ −

1

2
w22,ξ

)
+ ν [w2,ξ (u3 + vθ)],ξ

−1

2
(1− ν)

[
(w,θv,ξ),ξ + (w,ξv,ξ),θ

])

−EZ2
(
u3,ξ −

1

2
w22,ξ

)

ξξ

(4.39)

This system, represented by membrane equations in the ‘outer’ region and

beam equations in the ‘inner’ region, is linear at each level, self-adjoint, and can
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be solved. As applied in the previous one-dimensional analysis, a torsional spring

boundary condition appears more flexible than a clamped condition. This also may

be used as an additional control mechanism. The complete set of dimensional bound-

ary conditions:

u(R, θ) = 0

u,r(R, θ) = 0

u,θ(R, θ) = 0 (4.40)

u(r, θ) = u(r, θ + 2π)

u,θ(r, θ) = u,θ(r, θ + 2π)

v(R, θ) = 0

v,r(R, θ) = 0

v,θ(R, θ) = 0 (4.41)

v(r, θ) = v(r, θ + 2π)

v,θ(r, θ) = v,θ(r, θ + 2π)

w(0, θ) = α;α <∞

w,r(0, θ) = −w,r(0, θ + π)

D
[
rw,rr(R, θ) + ν

(
1
r
w,θθ(R, θ) + w,r(R, θ)

)]
= (4.42)

Nrz − EZε(R, θ) +K(θ)w,r(R, θ)

+EZr
[(
u,r(R, θ) +

1
2
w,r(R, θ)

2
)

−ν
(
1
r
u(R, θ) + 1

r
v,θ(R, θ) +

1
2
1
r2
w,θ(R, θ)

2
)]
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using the same scaling rules previously presented, the following non-dimensional

boundary conditions are derived:

u3(R) = 0 u3,ξ(R) = 0

u4(R) = 0 u4,ξ(R) = 0

v3(R) = 0 v3,ξ(R) = 0

v4(R) = 0 v4,ξ(R) = 0

w2(R) = 0 w2,ξξ(R) = −KR(θ)w2,ξ

w3(R) = 0 w3,ξξ(R) = −KR(θ)w3,ξ − 1
η1
EZε3 + (ξw2,ξξ − νw2,ξ)

− 1
η1
EZ2

(
u3,ξ − 1

2
w22,ξ

)

w4(R) = 0 w4,ξξ(R) = −KRθw4,ξ + [ξw3,ξξ + ν (w2,θθ − w3,ξ)]

− 1
η1
EZ2 [(u4,ξ − ξu3,ξ − w2,ξw3,ξ) + ν (u3 + v3,θ)]

(4.43)

where it can now be seen that EZε3 represents the non-dimensional moment imposed

by the piezoelectric layer(s), and Nz = 0 using the neutral axis. This system rep-

resents the nonlinear equations of motion of a circular plate-membrane. A further

simplification at this point can be used to analyze an axisymmetric system.

4.2 Axisymmetric Solution

The nonlinear equations of motion of an axisymmetric, circular membrane can

be derived by removing all θ dependence in the system developed in the previous

section. At this point, we assume EHεθ = EHεr = EHε. This physically means

bidirectional piezoelectric materials are assumed, and the spring stiffness is constant

around the membrane. The follower-force pressure terms, similar to the beam terms

in the previous chapter, will be reinserted at this stage also.
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u,tt − η2
[
∇2u− u

r

]
= η2

[
w,r

(
w,rr − ν

1

2r
w2,r

)]

−2νuu,t + η2EZ
1

r

[
1

r
w,r − (rw,rr),r

]
− 2Pw,r

(4.44)

v,tt −
1

2
η2

1

r

(
(1− ν)

[
erθ + (rerθ),r

])
= −2νvv,t (4.45)

w,tt −∇2w + ε2∇4w =− 2µw,t +
1

r
([rw,rer] + ν [uw,r]),r

− η2(1 + ν)EHε∇2w + P [1− 2u,r]

+ EZ
1

r

(
r
[
∇2u− eθ

]
+ ν

3

2
w2,r

)

,r

(4.46)

with the following moment balance boundary condition:

ηε2 [rw,rr + νw,r]− EZε + ηKw,r − EZ

[
(ru,r − νu) +

1

2
w2,r

] ∣∣∣∣
r=1

(4.47)

where

∇4 = ∇2∇2

∇2 = ∂2

∂r2
+

1

r

∂

∂r

(4.48)

er = u,r +
1

2
w2,r

eθ =
u

r

erθ = v,r +
1

r
v

(4.49)

N = Ni − (1 + ν)EHε (4.50)

with the following boundary conditions of interest:

D [rw,rr + νw,r]−Nz + EZε = Kw,r + EZ

[
(ru,r + νu) +

1

2
w2,r

] ∣∣∣∣
r=R

(4.51)
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w

∣∣∣∣
r=0

<∞ (4.52)

After expanding, only the first couple expansion terms are collected and in-

dividually evaluated. The following system of equations represent the ‘outer’ ex-

pansion of the system which dominates the deflection in the center region of the

plate-membrane:

∇2u3 −
1

r2
u3 = 0 (4.53)

∇2u4 −
1

r
u4 = − 1

η21
u3,00 −

1

2

[(
rw22,r

)
,r
− w22,r

]

+
1

r
EZ2

[
1

r
w2,r −

(
r2w2,rr

)
,r

]
(4.54)

∇2v3 −
1

r2
v3 = 0 (4.55)

∇2v4 −
1

r2
v4 = − 1

η21
v3,00 (4.56)

w2,00 −∇2w2 = 0 (4.57)

w3,00 −∇2w3 = −2w2,01 − 2ω1w2,00 − 2µ1w2,0 (4.58)

w4,00 −∇2w4 = −w2,11 − 2w0,02 − 4ω1w2,01

−
(
ω21 + 2ω2

)
w2,00 − 2µ1w2,1 (4.59)

−2ω1µ1w2,0 − 2w3,01 − 2ω1w3,00

−2µ1w3,0 − η21(1 + ν)EHε2
1

r
(rw2,r),r

1

r2
w2,θθ −∇2w2 (4.60)

Again, these clearly indicate the dominant membrane behavior in the ‘outer’

region of the plate. As discussed previously, the only boundary layer occurs at the
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edge of the plate. Applying the stretching variable ξ = 1−r
ε
, the following system is

derived for the stretched region near the r = 1:

u3,ξξ =
1

2

(
w22,ξ

)
,ξ
+ EZ2w2,ξξξ (4.61)

u4,ξξ = (w2,ξw3,ξ),ξ +
1

2
w22,ξ + u3,ξ

+EZ2 (w3,ξξξ + 3ξw2,ξξξ + 2w2,ξξ) (4.62)

1

2
(1− ν)v3,ξξ = 0 (4.63)

1

2
(1− ν)v4,ξξ = +

1

2
(1− ν)ξv3,ξ (4.64)

w2,ξξξξ − w2,ξξ = 0 (4.65)

w3,ξξξξ − w3,ξξ = −η1
[
w2,ξ

(
u3,ξ −

1

2
w22,ξ

)]

,ξ

+ w2,ξξξ (4.66)

w4,ξξξξ − w4,ξξ = −w2,00 − [EHεr2 + EHεθ2]w2,ξξ

−η1
([

w2,ξ (u4,ξ − w2,ξw3,ξ) + w3,ξ

(
u3,ξ −

1

2
w22,ξ

)]

,ξ

+

[
w2,ξ

(
u3,ξ −

1

2
w22,ξ

)]
− ν [w2,ξu3],ξ

)

−EZ2
(
u3,ξ −

1

2
w22,ξ

)

ξξ

(4.67)
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The adjusted boundary conditions are:

u(R) = 0

u,r(R) = 0 (4.68)

v(R) = 0

v,r(R) = 0 (4.69)

w(0) <∞

D [rw,rr(R) + w,r(R)] = Nz − EZε +Kw,r(R)

+EZr
[(
u,r(R) +

1
2
w,r(R)

2
)
− ν 1

r
u(R)

]
(4.70)

using the same scaling rules previously presented, the following non-dimensional

boundary conditions are derived:

u3(0) = 0, u3,ξ(0) = 0

u4(0) = 0, u4,ξ(0) = 0
(4.71)

v3(0) = 0, v3,ξ(0) = 0

v4(0) = 0, v4,ξ(0) = 0
(4.72)
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w2(0) =0

w2,ξξ(0) =−Kw2,ξ(0)

w3(0) =0

w3,ξξ(0) =−Kw3,ξ(0)−
1

η1
EZε3 + (ξw2,ξξ − νw2,ξ)

− 1

η1
EZ2

(
u3,ξ −

1

2
w22,ξ

)

w4(0) =0

w4,ξξ(0) =−Kw4,ξ(0) + [ξw3,ξξ − νw3,ξ]

− 1

η1
EZ2 [(u4,ξ − ξu3,ξ − w2,ξw3,ξ) + νu3]

(4.73)

where it can again be seen that EZε3 represents the non-dimensional moment im-

posed by the piezoelectric layer(s), and Nz = 0 using the neutral axis. This system

represents the nonlinear equations of motion of a circular plate-membrane.

This system, represented by membrane equations in the ‘outer’ region and

beam equations in the ‘inner’ region, is again linear at all levels, self-adjoint, and

can be solved. Matching each level prior to solving the next level in the expansion

provides a methodical approach to the problem.

The solution to the differential equation governing the behavior of the plate in

the ‘outer’ region (Equation 4.57)

wo2,00 −∇2wo2 = 0 (4.74)

can be represented as

wo2(r, T0, T1, T2, . . .) =a0(T1, T2, . . .)−
P2
4
r2

+
∑

n

[
a1(T1, T2, . . .)J0(rβn)e

iβnT0 + cc
] (4.75)
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where the ai terms represent constant terms with respect to the radial (r) and

dominant time (T0) variables. At this point they can be functions of the higher order

time variables (T1, T2, . . .), however. The general solution includes Bessel functions

of the first, Ji, and of the second, Yi, kinds. The Bessel functions of the second

kind have been discarded due to their non-finite values at the origin. The solution

to the differential equation governing the behavior of the plate in the ‘inner’ region

(Equation 4.65):

wi2,ξξξξ − wi2,ξξ = 0 (4.76)

is

wi2(ξ, T0, T1, . . .) = b0(T0, T1, · · · ) + b1(T0, T1, · · · )ξ + b2(T0, T1, · · · )e−ξ (4.77)

where the bi terms can be functions of time only. The positive exponential term

is neglected since the inner solution would be unbounded otherwise. Applying the

boundary conditions at this level:

w2(0) =0

w2,ξξ(0) =−Kw2,ξ(0)

the ‘inner’ solution becomes:

wi2(ξ, T0, T1, . . .) = −b2(T0, T1, · · · )
(
1− K − 1

K
ξ − e−ξ

)
. (4.78)

Expanding the ‘outer’ solution with the ‘inner’ variable, and vice-versa, the bound-

ary layer equation drops out (wi
2 = 0). The complete solution of the second level

expansion is:

wo2(r, T0, T1, T2, . . .) =
P2
4

(
1− r2

)

+
∑

n

[
a1(T1, T2, . . .)J0(rβn)e

iβnT0 + cc
] (4.79)
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where βn are the zeros of the zeroth order Bessel function. To this point, only one

unknown (a1) remains at this level. This term will be calculated through a solvability

condition at the next level.

At the next level, the in-plane displacement terms present themselves. Since,

in the expansion, these terms are independent at this level, each can be solved

independently. The solution to the differential equation governing the behavior of

the radial displacement of the plate in the ‘outer’ region (Equation 4.53):

∇2u3 −
1

r2
u3 = 0 (4.80)

is

uo3(r, T0, T1, T2, . . .) = c0(T0, T1, T2, . . .)r +
1

r
c1(T0, T1, T2, . . .). (4.81)

The corresponding ‘inner’ differential equation:

u3,ξξ =
1

2

(
w22,ξ

)
,ξ

(4.82)

yields the following linear equation:

ui3(ξ, T0, T1, T2, . . .) = d0(T0, T1, T2, . . .) + d1(T0, T1, T2, . . .)ξ. (4.83)

Applying the boundary conditions:

u3(R) = 0, u3,ξ(R) = 0,

both d0 and d1 are zero, indicating no boundary layer effect at this level within the

plate. Matching the ‘outer’ and ‘inner’ equations eliminates each of the ci variables

also. Performing the same procedure also produces a trivial solution for the other

in-plane displacement (v3).
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Solving the transverse displacement at this level (w4) will yield solvability con-

ditions completing the solution of the previous level. The solution to the differential

equation governing the behavior of the plate in the ‘outer’ region at this level (Equa-

tion 4.58):

w3,00 −∇2w3 = −2w2,01 − 2ω1w2,00 − 2µ1w2,0 (4.85)

cannot be completed without removing the forcing terms which lie within the null-

space of the homogenous adjoint solution of this system. These terms would produce

non-secular behavior if ignored. The left-hand side of each differential equation is

also the adjoint of this system. All forcing parameters on the right-hand side of

each equation must be removed prior to solving each equation, thus producing a

‘solvability equation’ necessary to complete the analysis. The entire right-hand side

of this equation above must be removed. Setting this system to zero, the following

results

a1(T1, T2, . . .) = a11(T2, . . .)e
γ1T1 (4.86)

where

γ1 = −µ1 − iω1βn. (4.87)

The ‘outer’ solution is then

wo3(r, T0, T1, T2, . . .) = a2(T1, T2, . . .) +
∑

n

[
a3(T1, T2, . . .)J0(rβn)e

iβnT0 + cc
]

(4.88)

where the ai terms represent constant terms with respect to the radial (r) and

dominant time (T0) variables, as before. The solution to the differential equation

governing the behavior of the plate in the ‘inner’ region:

w3,ξξξξ − w3,ξξ = −η1
[
w2,ξ

(
u3,ξ −

1

2
w22,ξ

)]

,ξ

+ w2,ξξξ (4.89)
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is

wi3(ξ, T0, T1, . . .) = b3(T0, T1, · · · ) + b4(T0, T1, · · · )ξ + b5(T0, T1, · · · )e−ξ (4.90)

where the constant terms (bi) can be function of time only, as before. Applying the

boundary conditions at this level:

w3(0) = 0

w3,ξξ(0) = −Kw3,ξ(0)− 1
η1
EZε3 + (ξw2,ξξ − νw2,ξ)− 1

η1
EZ2

(
u3,ξ − 1

2
w22,ξ

)

the ‘inner’ solution becomes:

wi3(ξ, T0, T1, . . .) = −
1

η1K
EZε3ξ − b5(T0, T1, · · · )

(
1− K − 1

K
ξ − e−ξ

)
. (4.91)

Expanding the ‘outer’ solution with the ‘inner’ variable, and vice-versa, the boundary

layer solution results. At this point we will consider the same time-varying actuation

function with bias used in Chapter III:

EAε2 = f0 + fsin[(Ω + εδ)t]

= f0 + fsin(ΩT0 + δT1)

EAεz3 = m0 +msin[(Ω + εδ)t]

= m0 +msin(ΩT0 + δT1) (4.92)

After applying Equation 4.92 to the system, the following results:

a2 =
K
K−1

[
m0

K
− P2

2

]
(4.93)

∑
n

[
a1(T1, T2, . . .)J0(βn)e

iβnT0 + cc
]
= 2m

K
ei(ΩT0+δT1). (4.94)
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Equation 4.94 is used to compute the actual displacement in w2 produced for a given

applied voltage and frequency. The results also provide the value of ω1, the first order

time correction

ω1 = −
1

βn
(δ − iµ1) . (4.95)

Continuing the procedure as previously demonstrated, the next level is solved

to produce not only the next level solution, but also additional solvability conditions.

Recognizing the dominance of the driving frequency, other modes will be neglected.

This research is concerned with both the dynamical properties of this material

as well as its static shape manipulation capabilities. At this point, to study the

shaping capabilities of the system, only the static solution in necessary.

4.2.1 Static Shaping. Since the system is decoupled, and the

in-plane solutions (u and v) have no affect through order ∼ ε3, only the transverse

solution, w, will be discussed for the remainder of this chapter. We can solve the

system of equations, using a two level matching, to find the following composite

solution to order ε4:

wc(r) = ε2
P2
2

(
1− r2

)

+ε3
(

K

K − 1

[
P2
2

+
EZε3
K

] (
e−ξ − 1

))

+ε4
(
P2
4
η2(1 + ν)EHε2

(
1− r2

))

+ε4
(

K

K − 1

[
2K − 3 + 2ν

K − 1

(
P2
2

+
EZε3
K

)
− EZε3

K2

] (
e−ξ − 1

))
.(4.96)

Figure 4.1 illustrates the behavior of the piezoelectric laminate plate-membrane

with a pressure differential and symmetric edge conditions. Consider a 15 cm di-

ameter circular membrane with three laminate layers consisting of a Kapton base

layer, and two layers of PVDF with the properties listed in Table 3.1 of Chapter III.

Reasonable environmental and actuation values yield interesting results.
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Figure 4.1 Axisymmetric Plate Deflection (Pressurized/No Voltage Applied)

(a) (b)

Figure 4.2 Axisymmetric Plate Zernike Deviations: (a) Pressurized/No Voltage
Applied (b) Change Due to 10 Volt Potential

A 10 volt actuation potential causes a small deviation in the center portion

of the plate totalling approximately one wavelength of visible light (∼ 600nm).

(Note: Materials currently available allow over 1000 volts.) Figure 4.2 illustrates

the change in the reflected wavefront. Both plots present the Zernike coefficients for

modes less than 17. Appendix A presents a short overview and graphic illustration

of the Zernike polynomial series. Figure 4.2 indicates, as expected, the reflected

wavefront is dominated by the axisymmetric modes. The right side of Figure 4.2 is

the change in the wavefront due to the boundary layer effects and actuation. The
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effective boundary layer region is approximately of the order of
√
ε, as expected from

the original mathematical foundation and is considered to have a small affect on the

membrane away from this region. The dynamics of the plate are also effected.

4.2.2 Dynamic Response. As discussed earlier, applying the

solvability conditions produces temporal adjustments (ωi terms). The first two are

presented here:

ω1 =
1

βn
(δ + iµ1) (4.97)

ω2 =
µ1
β2n

[
2δ

βn
+ βn − 6µ1βn − 8

]

+
i

βn

[
2δ2

βn
+ β2n

(
β2n + EHε2

)
(4.98)

−4
(
δ2 − µ21

)
+ 6µ1βnδ + 2βnµ

2
1 + βnδ + β2nµ1

]
.

Since time has been scaled as:

ω = 1 + εω1 + ε2ω2 + · · · ,

the real terms provide a direct method of computing the deviation of the modal

frequencies from the linear case. The imaginary terms function as modifiers to the

dissipation inherent in the material. As expected the amplitudes will not decay

without damping, and the damping within the material is a direct cause of the

modal frequency shift.

The coupled nonlinear equations of motion derived in this chapter represent the

behavior of a piezothermoelastic laminated circular membrane. The development of

the perturbation solution, based on axisymmetric assumptions, provides a solution

for a laminated membrane made of piezothermoelastic material. The results illus-

trate the effectiveness of a Kapton/PVDF beam at optical wavelengths and is related

to actual reflected wavefront displacements. The solutions in this chapter represent
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the limit of the analytical approach. The next chapter presents a new mathematical

approach to this problem which can produce solutions to more complicated systems.
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V. Integral Multiple Scales
The perturbation method of multiple scales can be used to produce solutions

of a certain class of differential equations. In particular, this method can produce

the same result as the method of matched asymptotic expansions when a boundary

layer effect is present. This chapter adapts this method to a new finite element

approach. After presenting a short analytical linear beam-string example, a finite

element approach is developed. This finite element method is applied to the linear

string-beam, for which the closed-form solution is well known, and comparisons are

made. This method will then be applied to the non-linear problems of interest in

the next chapter.

5.1 Linear One-Dimensional Beam-String

Nayfeh (69) presented the linear beam-string problem using the method of

matched asymptotic expansions. He also presented the solution of a boundary layer

problem using multiple scales when a system has a single boundary layer (67). Here,

the method of multiple scales is expanded to include multiple boundary layers. To

develop the necessary fundamental equations needed in this analysis, the Lagrangian

is needed. The potential energy of a clamped-clamped elastic beam, assuming plane

sections remain plane, can be defined using the strain energy representation:

V̂ =
1

2

∫

V̂
Eŵ2,x̂ − 2Eẑŵ,x̂ŵ,x̂x̂ + Eẑ2ŵ2,x̂x̂dV̂ (5.1)

As previously stated, all variables after a comma in the subscript indicate the

derivative with respect to that variable. The beam’s kinetic energy, ignoring rotatory
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inertia, can be represented as:

T̂ =
1

2

∫

V̂
ρŵ2,t̂dV̂ (5.2)

where ρ is the beam’s density. The transverse deflection is represented as w. The

system’s non-conservative work is a result from the follower pressure force and can

be represented as

Ŵnc = −
∫

x̂

P̂ ŵdx̂. (5.3)

The simple beam’s Lagrangian can then be compiled from Hamilton’s principle

∫ t2

t1

δT̂− δV̂ + δŴncdt = 0, (5.4)

where δ indicates variation. This system’s dimensional Lagragian, L, representing

the beam’s energy is derived:

L̂ =
1

2

∫

V̂
ρŵ2

,t̂
− Eŵ2,x̂ + 2Eẑŵ,x̂ŵ,x̂x̂ − Eẑ2ŵ2,x̂x̂dV̂ −

∫

x̂

P̂ ŵdx̂ (5.5)

with clamped boundary conditions, where the hats (̂) represent the dimensional

values.

The equation of motion for this system can be quickly verified as

ρAŵt̂t̂ + EIŵIV − EAŵ′′ = −P̂ , (5.6)

which is the dynamic Bernoulli-Euler beam equation. Applying the scaling relations:

w = ŵ/L, z = ẑ/L, x = x̂/L, dx = dx̂/L, and:

ε2 =
EI

EAL2
, P (x) = P̂L

EA
, t =

√
ρAL2

EA
t̂ (5.7)
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to Equation 5.5, where L is the length of the beam, and ε which is the scaled radius

of gyration of the beam and represents the ‘smallness’ parameter which lends this

system to perturbation solution methods, produces:

L =

∫

x

1

2
w2,t −

1

2
w, x2 + EAzw,xw,xx −

1

2
ε2w2,xx − Pwdx (5.8)

Performing a standard matched asymptotic expansion of this system yields the

following static solution (69)

wc =
P

2
(x− x2)− ε

[
P

2

(
1− e−ξ − e−ζ

)]
(5.9)

where

ξ =
x

ε
, ζ =

1− x

ε
. (5.10)

The EAz term drops out of the solution as the variation of the Lagrangian is eval-

uated. Based on the discussions in Chapter III, EAz = 0 for a symmetric beam.

Therefore, this term will be neglected for the remainder of this chapter.

Figure 5.1 illustrates the beam-string deflection and the effect of the ‘smallness’

factor on the solution. The region where the beam-like behavior occurs is near the

ends, in the boundary layers. The length of this area is roughly on the order of
√
ε

which is therefore directly related to the beam’s thickness to length ratio. We can

clearly see the dramatic impact this value has on the solution. It’s important to note

that the region of validity is finite. An initial assumption was that ε was very small.

As ε increases, the solution begins to break down as the boundary layer effects begin

to interact. This is a common limitation of all perturbation methods.

Equation 5.8 produces a beam-string solution. Near its ends, it exhibits beam-

like behavior, and in the center region it acts like a string. This suggests a spatial

multiple scales application may be appropriate. Multiple scales is commonly applied

to differential equations of motion resulting from application of variational principles.
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Figure 5.1 Analytic Beam-String Solution (P=1)

Why not apply multiple scales directly to the Lagrangian? The result would be an

integrated solution.

5.2 Integral Multiple Scales

The procedure begins by introducing three scales: η = x, ξ = x
ε
, and ζ = 1−x

ε
.

The primary assumption with the method of multiple scales is that these scales are

considered independent (67). The method introduced here relies on this assumption.

Applying the chain rule to x = x(η, ξ, ζ; ε), the following differentials are pro-

duced:

d
dx

= ∂
∂η

+ 1
ε

[
∂
∂ξ
− ∂

∂ζ

]
(5.11)

d2

dx2 = ∂2

∂η2 + 2
ε

[
∂2

∂ξ∂η
− ∂2

∂ζ∂η

]
+ 1

ε2

[
∂2

∂ξ2
+ ∂2

∂ζ2
− 2 ∂2

∂ξ∂ζ

]
(5.12)
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Substituting Equation 5.12 into Equation 5.8 produces the multiple scale rep-

resentation of the beam-string’s Lagrangian (w(x) = w(η, ξ, ζ; ε)):

L =

∫

x

1

2
w2,t −

1

2

[
w,η +

1

ε
(w,ξ − w,ζ)

]2

− ε2
1

2

[
w,ηη +

2

ε
(w,ξη − w,ζη) +

1

ε2
(w,ξξ + w,ζζ − 2w,ξζ)

]2
− Pwdx

(5.13)

Next, substituting the expansions:

t = ωτ (5.14)

Tn = εnτ (5.15)

ω = ω0 + εω1 + ε2ω2 + · · · (5.16)

w(η, ξ, ζ, t; ε) = w0(η, ξ, ζ, t) + εw1(η, ξ, ζ, t) + ε2w2(η, ξ, ζ, t) + · · · (5.17)

where ω0 = 1 as the original system was effectively scaled by ω0, into Equation 5.13.

The Lagrangian can now be organized into increasing orders of ε:

L = ε−2L−2 + ε−1L−1 + L0 + εL1 + ε2L2 + · · · (5.18)

where

L−2 =

∫

x

1

2
F 20 +

1

2
G20dx (5.19)

L−1 =

∫

x

F0F1 +G0G1dx (5.20)

L0 =

∫

x

1

2
F 21 + F0F2 +

1

2
G21 +G0G2 − Pw0 +

1

2
w20,0dx (5.21)

...
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and

Fi =wi,ξξ + wi,ζζ − wi,ξζ + 2 ((wi−1,ξη − wi−1,ζη) + wi−2,ηη

Gi =wi,ξ − wi,ζ + wi−1,η.
(5.22)

Applying variational principles to each Li produces

L−2 : ∇2
[
∇2w0 − w0

]
= 0 (5.23)

L−1 : ∇2
[
∇2w0 − w0

]
= 0 (5.24)

∇2
[
∇2w1 − w1

]
= −∇

[
4∇2w0 − 2w0

]
,η

L0 : ∇2
[
∇2w0 − w0

]
= 0 (5.25)

∇2
[
∇2w1 − w1

]
= −∇

[
4∇2w0 − 2w0

]
,η

∇2
[
∇2w2 − w2

]
= −∇

[
4∇2w1 − 2w1

]
,η
−
[
6∇2w0 − w0

]
,ηη
− w0,00 − P

...

where

∇ =
∂

∂ξ
− ∂

∂ζ

∇2 = ∂2

∂ξ2
+

∂2

∂ζ2
− 2

∂2

∂ξ∂ζ
.

(5.26)

Notice all lower solutions exist within each successive level. This allows se-

lection of the desired level of precision at the beginning of the solution method.

Therefore, if the desired solution is to be to order ε2, select L2 and apply the desired

variational principles. Applying Euler’s equations to L2, the following system of

5-6



www.manaraa.com

equations is produced:

∇2
[
∇2w0 − w0

]
= 0 (5.27)

∇2
[
∇2w1 − w1

]
= −∇

[
4∇2w0 − 2w0

]
,η

(5.28)

∇2
[
∇2w2 − w2

]
= −∇

[
4∇2w1 − 2w1

]
,η
−
[
6∇2w0 − w0

]
,ηη

−w0,00 − P (5.29)

∇2
[
∇2w3 − w3

]
= −∇

[
4∇2w2 − 2w2

]
,η
−
[
6∇2w1 − w1

]
,ηη

− [4∇w0],ηηη − 2w0,01 − w1,00 − 2ω1w0,00 (5.30)

∇2
[
∇2w4 − w4

]
= −∇

[
4∇2w3 − 2w3

]
,η
−
[
6∇2w2 − w2

]
,ηη

− [4∇w1],ηηη − w0,ηηηη − w0,11 − 2w0,02 − 2w1,01

−w2,00 − 2ω1w1,00 − 2ω2w0,00 − ω21w0,00 (5.31)

The system can be solved in successive layers from Equation 5.27 to Equation

5.31. Removing all time-based derivatives, a static solution can be attained. The

static solution of Equation 5.27 is:

w0(η, ξ, ζ) = a0(η) + a1(η)e
−ξ + a2(η)e

−ζ (5.32)

where the positive exponential and linear terms have already been removed since

as ε → 0, the solution must be finite. Applying this result to the next equation

produces:

∇2
[
∇2w1 − w1

]
= −∇

[
4∇2w0 − 2w0

]
,η

= 2
[
a1,ηe

−ξ + a2,ηe
−ζ] (5.33)

The right-hand side of this equation must be zero to eliminate possible secular terms.

This requires a1 and a2 not to be functions of η, which means they must be constant

values. With the clamped boundary conditions, these terms are eliminated, leaving
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only the a0(η) term. Therefore, no boundary layer exists at this level. This term

can be completed in the next level. The solution of Equation 5.28 is then:

w1(η, ξ, ζ) = b0(η) + b1(η)e
−ξ + b2(η)e

−ζ . (5.34)

Successive levels are solved to produce the level of precision desired. The en-

tire solution is not continued here, but it’s simple to verify the original solution

produced through the matched-asymptotic expansion method (Equation 5.9) satis-

fies this system. While even this most trivial example proves to be challenging to

solve analytically, this methodical approach can take advantage of computational

techniques and be applied to a finite element method.

5.3 Finite Element Approach

A typical finite element approach begins by substituting an assumed shape

function vector and an unknown displacement vector into the energy equation. Ap-

plying Euler’s equations, or variational methods, would produce the finite element

system which can be used to model the system in question. To apply this method-

ology to the linear beam-string discussed in this chapter, we substitute the shape

function vector and displacement vector into Equation 5.8:

w(x, t) = {N(x)}{d(t)} (5.35)

where {N(x)}1×n is the assumed shape function vector, and {d(t)}n×1 is the elemen-

tal displacement vector to be computed, producing:

L =

∫

x

1

2
{d,t}T{N}T{N}{d,t} −

1

2
ε2{d}T{N,xx}T{N,xx}{d}

− 1

2
{d}T{N,x}T{N,x}{d} − P{N}{d}dx.

(5.36)
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The Lagrangian in Equation 5.36 is now only a function of one independent

variable, t. Taking the variation of Equation 5.36, applying the integration, and rear-

ranging the system, we can arrive at the standard dynamical finite element equations:

[M ] {d,tt}+ [K] {d} = {Γ} (5.37)

[M ] =
∫
x
{N}T{N}dx (5.38)

[K] =
∫
x
{N,x}T{N,x}+ ε2{N,xx}T{N,xx}dx (5.39)

{Γ} = −
∫
x
P{N}Tdx (5.40)

where [M ]n×n and [K]n×n are the system matrices. As ε approaches zero, the behav-

ior approaches that of a string, and locking may occur. To counter this problem, an

increase in the number of elements might improve stability, but will quickly increase

the solution time. This is a byproduct of the assumed shapes of the displacement.

If the material being modelled behaves as a beam-string, the shape functions should

behave as beam-strings.

Previous discussions illustrate how a beam with extremely low bending stiff-

ness only behaves as a beam near the point where the force or moment is applied.

It behaves as a string elsewhere. Appendix B presents the development of a set

of asymptotic shape functions which can be used in the following finite element

approach. The asymptotic shape functions are beam-strings.

5.3.1 Finite Element Expansion. Substituting Equations

5.16, 5.17 and

{N} = {N0}+ ε{N1}+ ε2{N2}+ ε3{N3}+ · · ·

{d} = {d0}+ ε{d1}+ ε2{d2}+ ε3{d3}+ · · ·
(5.41)
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into Equation 5.13, and separating orders of ε, an energy expansion can be created:

L = ε−2L−2 + ε−1L−1 + L0 + εL1 + ε2L2 + · · · (5.42)

As discussed in section 5.2, selecting the order of precision is equivalent to

selecting the Lagrangian order component. All vector brackets ({ }) and matrix

brackets ([ ]) will no longer be carried as the reader should recognize the difference

between scalars, vectors, and matrices. Applying Euler’s equations to the individual

Li terms produces:

L−2 : K−2d0 = 0 (5.43)

L−1 : K−2d0 = 0 (5.44)

K−2d1 = −K−1d0

L0 : K−2d0 = 0 (5.45)

K−2d1 = −K−1d0

K−2d2 = −K−1d1 − Γ0 −M0ẅ0 −K0d0
...

where

K−2 =
∫
x

GT
0G0 + F T

0 F0dx (5.46)

K−1 =
∫
x

GT
0G1 +GT

1G0 + F T
0 F1 + F T

1 F0dx (5.47)

K0 =
∫
x

GT
1G1 +GT

0G2 +GT
2G0 + F T

1 F1 + F T
0 F2 + F T

2 F0dx (5.48)

Γ0 =
∫
x

F T
1 dx (5.49)

M0 =
∫
x

NT
0 N0dx (5.50)
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and

Fi =[Ni,ξξ +Ni,ζζ −Ni,ξζ + 2(Ni−1,ξη −Ni−1,ζη) +Ni−2,ηη]

Gi =[Ni,ξ −Ni,ζ +Ni−1,η]
(5.51)

As seen before, all lower order equations exist in each Lagrangian element.

This means the functions produced through the application of Euler’s equations to

Ln exists in the set of functions produced through the application of Euler’s equations

to Lm, where m > n.

To produce a solution through order ε2, Euler’s equations are applied to term

L2 producing the following system of equations:

K−2d0 = 0 (5.52)

K−2d1 = −K−1d0 (5.53)

K−2d2 = −K−1d1 − Γ0 −M0ẅ0 −K0d0 (5.54)

K−2d3 = −K−1d2 − Γ1 −M0ẅ1 −K0d1 − ω1M0d̈0 −M1d̈0 −K1d0 (5.55)

K−2d4 = −K−1d3 − Γ2 −M0d̈2 −K0d2 − ω1M0d̈1 −M1d̈1 −K1d1

−ω1M1d̈0 − ω2M0d̈0 − ω21M0d̈0 −M2d̈0 −K2d0 (5.56)

where

K−2 =
∫
x

GT
0G0 + F T

0 F0dx (5.57)

K−1 =
∫
x

GT
0G1 +GT

1G0 + F T
0 F1 + F T

1 F0dx (5.58)

K0 =
∫
x

GT
1G1 +GT

0G2 +GT
2G0 + F T

1 F1 + F T
0 F2 + F T

2 F0dx (5.59)

K1 =
∫
x

GT
0G3 +GT

3G0 +GT
2G1 +GT

1G2 + F T
0 F3 + F T

3 F0

+F T
2 F1 + F T

1 F2dx (5.60)

K2 =
∫
x

GT
2G2 +GT

1G3 +GT
3G1 +GT

0G4 +GT
4G0 + F T

2 F2

+F T
1 F3 + F T

3 F1 + F T
0 F4 + F T

4 F0dx (5.61)
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Γ0 =
∫
x

PNT
0 dx (5.62)

Γ1 =
∫
x

PNT
1 dx (5.63)

Γ2 =
∫
x

PNT
2 dx (5.64)

M0 =
∫
x

NT
0 N0dx (5.65)

M1 =
∫
x

NT
0 N1 +NT

1 N0dx (5.66)

M2 =
∫
x

NT
1 N1 +NT

0 N2 +NT
2 N0dx (5.67)

and Fi and Gi are defined in Equation 5.51.

As discussed earlier in the chapter, the fundamental assumption to the method

of multiple scales is the independence of the scales (i.e. η, ξ, ζ). From an energy

perspective, this can be viewed as the energy in the region of dominance for each

variable dominates the energy integral. The conjecture here is the integral bounds

can be transformed as

∫

x

f(x)dx =

∫

ζ

∫

ξ

∫

η

f(η, ξ, ζ)dηdξdζ. (5.68)

The validity of this statement can be evaluated best through evaluation of the

results when applied to the example beam. Equations 5.57 and 5.58 represent the

first solvability equations in the analysis. Since d0 is arbitrary, the system matrix

K−2 must be trivial. Since K−2 represents the sum of the outer products of G0 and

F0, N0 must be only a function of η. The shape functions presented in Appendix B

satisfy this requirement. Imposing these solvability conditions, the following system
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of equations remain:

M0d̈0 +K0d0 = −Γ0 (5.69)

M0d̈1 +K0d1 = −Γ1 − [2ω1M0 +M1] d̈0 −K1d0 (5.70)

M0d̈2 +K0d2 = −Γ2 − [2ω1M0 +M1] d̈1 −K1d1

−
[(
2ω2 + ω21

)
M0 + 2ω1M1 +M2

]
d̈0 −K2d0 (5.71)

which represent the asymptotic finite element equations of motion of the linear beam

string presented earlier in this chapter.

5.3.2 Static Beam Results. Neglecting dynamic terms, the

static shape modeling capability of this system can be evaluated. Applying the

desired shape functions to this system and compiling the global stiffness matrices

for a desired grid, the beam’s shape can be predicted by applying the following

procedure:

d0 = −K−1
0 Γ0 (5.72)

d1 = −K−1
0 [Γ1 +K1d0] (5.73)

d2 = −K−1
0 [Γ2 +K1d1 +K2d0] (5.74)

d = d0 + εd1 + ε2d2. (5.75)

Each successive level of di corrects the fundamental d0 shape. Since each i

level, i = 1..n, is of the order of εi, the order of the system can be matched to the

desired precision of the output.

Equation 5.75 is a function of ε. To correctly produce a finite element solution,

this value must be integrated into the system matrices. Beginning with Equation
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5.75, the equivalent displacement equation is then:

d̂ = d̂0 + d̂1 + d̂2 (5.76)

where

d̂0 = d0

d̂1 = εd1

d̂2 = ε2d2.

(5.77)

Multiplying the corresponding power of ε through Equations 5.72-5.74, pro-

duces

d̂0 = K̂−1
0 Γ̂0

d̂1 = K̂−1
0

[
Γ̂1 − K̂1d̂0

]

d̂2 = K̂−1
0

[
Γ̂2 − K̂1d̂1 − K̂2d̂0

]
(5.78)

where

K̂0 = K0

K̂1 = εK1

K̂2 = ε2K2

Γ̂0 = Γ0

Γ̂1 = εΓ1

Γ̂2 = ε2Γ2

(5.79)

The completed solution is then

w =
(
N0 + εN1 + ε2N2 + · · ·

)
d̂ (5.80)

where ε, in this case, is the elemental parameter.

The displacements are directly effected by the choice of the shape functions.

The two shape function expansions developed in Appendix B satisfy the solvability

conditions and can be used in this formulation.
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Figure 5.2 Beam Simulation using Linear C1 Elements

Property Value
Young’s Modulus (E) 406 ksi
Thickness Ratio (t/L) 0.006

Pressure Differential (P) 0.1 lbs/in

Table 5.1 Linear Beam Element Properties
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Figure 5.3 Linear C1 Element Interface

5.3.2.1 Linear C1 Shape Function Results. If Linear C1

shape functions are selected for this system (Equation B.9), an initial evaluation

of the validity of this method can be performed. Figure 5.2 illustrates a selected

result from applying a 10 element grid to a beam with properties outlined in Table

5.1. The smooth curve on top is the analytical prediction, while the ‘bumpy’ lower

curve in the prediction from the finite element procedure using the Linear C1 shape

functions. The predicted shape error indicates an increased stiffness prediction, but

these elements may provide an alternative to simple rod or string (C0) elements.

While the center portion of each element is incapable of modeling any curvature, as

discussed earlier, the shape does closely follow the analytical shape prediction.

The interface regions between each element is of interest. Figure 5.3 shows

that while the shape is smooth, unlike a C0 model, the curvature changes in the

interface regions cause concern. The upper curve is the analytical prediction. The

lower finite element prediction remains below the analytical prediction and has a
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Figure 5.4 Beam Simulation using Cubic C1 Elements

significant curvature change near the interface in the center of the figure. It’s believed

this might be a byproduct of the systems inability to handle the curvature changes

anywhere but in the narrow boundary region of each element. If a better prediction

is required, the Cubic C1 shape functions allow internal curvature and could be used.

5.3.2.2 Cubic C1 Shape Function Results. While the Linear

C1 elements provided a string like element behavior, a better approximation can be

attained using Cubic C1 shape functions (Equation B.13). Figure 5.4 illustrates a

selected result from applying the same 10 element grid to a beam with the same

properties used in the last section (Table 5.1). These elements appear to provide a

much better approximation than the Linear C1 elements.

Figure 5.5 shows the clamped end of the beam indicating a close fit to the

analytical solution. While the element can’t quite match the curvature predicted by

the analytical result, the interface between each element (Figure 5.6) indicates an
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Figure 5.5 Cubic C1 Element Beam Edge

Figure 5.6 Cubic C1 Element Interface
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Figure 5.7 Cubic C1 Element Beam Error

excellent fit to the analytical solution. Boundary layer effects within the element

shape functions disappear in the solution. It appears the use of the Cubic C1 shape

functions provide a much better approximation of the beam’s true stiffness. Figure

5.7 illustrates the error across this beam model. The error is small, but the beam

edge regions indicate possible areas of concern which appear to be a result of a

boundary layer conflict between the analytical and finite element solutions.

To see the significant improvement this method provides, Figures 5.8 and 5.9

compare the MIMS result error using Cubic C1 elements to the standard finite el-

ement method error using standard C1 elements. Both are measured against the

analytical solution. Identical material properties and gridding were selected. While

the standard model appears to produce a smoother result, the MIMS result is over

3 orders of magnitude more accurate.
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Figure 5.8 Cubic C1 Element Beam Error - 50 Elements

Figure 5.9 Standard C1 Element Beam Error - 50 Elements
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Figure 5.10 Cubic C1 Error Examples: (a) Grid Size Effects (b) Thickness Effects

As the grid size is increased, it is important to not get too close to the global

boundary layer, approximated by the square root of the beam’s radius of gyration,

within the system. Figure 5.10 shows how increasing the number of elements causes

the center region of the model to deviate from the analytic prediction. This same

effect is realized by increasing the thickness ratio of the beam. This appears to be

an indication of ‘boundary layer encroachment’. As the thickness of the beam is

reduced, the effect of grid size is less noticeable. To better visualize the boundaries

of this method, analysis of extreme parameter values will more clearly present the

bounds of this method.

Figure 5.11 presents an analysis of beam thickness and grid size over the values

indicated, for a unit pressure differential. The standard deviation of the error across

the beam is plotted for increasing grid size and beam thickness, all other parameters

remaining constant. Because the finite element method is an approximation, there

will always be a small amount of error, therefore a standard deviation of zero is

not expected. It’s clear there is a region of optimum performance for this model.

The trough formed represents the optimum grid size given a beam’s physical size.

The error increases as the grid becomes too large because the real boundary layer
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Figure 5.11 Cubic C1 Element Error (Beam Thickness vs. Grid Size)

effect analytically modelled becomes larger than the shape functions can accurately

model. As the thickness increases the beam-string becomes more of a beam. The

fundamental assumption of a beam-string is that the thickness-to-length ratio is very

small. It’s expected the error increases as this value increases.

As mentioned, the minimum of this surface provides the optimum grid size for

a given beam thickness. Fitting a curve to the trough results in:

n =
1

2
t−

13
12 (5.81)

where t is the beam thickness and n is the number of grid elements. This trough is

clear at these extreme values, but becomes extremely flat as beam thickness shrinks.

This indicates good results can be attained with a large range of grid density selec-

tions.
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5.3.3 Natural Response. The dynamic properties of the clamped-

clamped linear beam-string can be studied through the sequential evaluation of Equa-

tions 5.69 through 5.71. By neglecting forcing, we can calculate the natural modes

of this system (Γi = 0, i = 0, 1, 2, ...). As discussed in Section 5.3.2, the solution

implementation can be rescaled using:

d̂ = d̂0 + d̂1 + d̂2 (5.82)

where

M̂0
¨̂
d0 + K̂0d̂0 = 0 (5.83)

M̂0
¨̂
d1 + K̂1d̂1 = −K̂1d̂0 −

(
2ω̂1M̂0 + M̂1

)
¨̂
d0 (5.84)

M̂0
¨̂
d2 + K̂2d̂2 = −K̂1d̂1 − K̂2d̂0 −

(
2ω̂1M̂0 + M̂1

)
¨̂
d1

−
[(
2ω̂2 + ω̂21

)
M̂0 + 2ω̂1M̂1 + M̂2

]
¨̂
d0 (5.85)

and

M̂0 =M0

M̂1 = εM1

M̂2 = ε2M2

K̂0 = K0

K̂1 = εK1

K̂2 = ε2K2

ω̂0 = ω0

ω̂1 = εω1

ω̂2 = ε2ω2

(5.86)

The response frequencies are now:

ω̂ = ω̂0 + ω̂1 + ω̂2 (5.87)

The solution to Equation 5.83 is found through a standard eigenanalysis method

assuming d̂0 = ν0e
iω̂0t: [

K̂0 − λ0M̂0

]
ν0 = 0 (5.88)

where ω̂0 =
√
λ0, the first order frequencies of the system corresponding to the first

order mode shapes, ν0. It should be noted here, due to the shape functions used in
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this analysis which are described in Appendix B, this system is positive semi-definite.

The next level will provide corrections to this solution. Continuing this methodology

to Equation 5.84:

[
K̂0 − λ0M̂0

]
ν1 = −

[
K̂1 − λ0

(
2ω̂1M̂0 + M̂1

)]
ν0 (5.89)

Since the space spanned by ν0 completely defines all mode contributions al-

lowed in Equation 5.88. Any contribution to the solution through ν1 must then be

orthogonal to the ν0 solution. We can impose this by premultiplying Equation 5.89

by the solution of Equation 5.88. The right side, with only one undetermined value,

can be solved:

ω̂1 =
νT0

[
K̂1 − λ0M̂1

]
ν0

2λ0νT0 M̂0ν0
(5.90)

providing the first ω correction.

Continuing this procedure to the next level, the next ω correction can be

calculated using the same procedure from Equation 5.85:

ω̂2 =
νT0

[
K̂2 − λ0

(
ω̂21M̂0 + 2ω̂1M̂1 + M̂2

)]
ν0

2λ0νT0 M̂0ν0
(5.91)

Section 5.3.2 clearly illustrated the advantage of choosing Cubic C1 shape

functions over Linear C1 shape functions developed in Appendix B. Applying these

shape functions to the above procedure will provide a basis for the same decision

when used in dynamic analysis.

5.3.3.1 Linear C1 Shape Function Results. Figure 5.12 plots

the first several computed wave shapes predicted by this system. As expected they

are very near a string solution. The coarse grid size accentuates the poor quality of

the Linear C1 elements. As the grid density is increased; however, the mode shapes

become very smooth, as expected. Correspondingly, the scaled mode frequencies are
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Figure 5.12 Linear C1 Modes: (a) First 5 Mode Shapes (b) Normalized Frequencies

presented in Figure 5.12. The increased stiffness of the system is again apparent as

the modal frequencies are higher than expected, especially at the higher modes.

5.3.3.2 Cubic C1 Shape Function Results. Figure 5.13 plots

the first five computed wave shapes predicted by this system. While both solutions

approach the analytical beam-string solution, the superiority of the Cubic C1 ele-

ments is clear. The grid size and properties are identical to that used in Section

5.3.2. Correspondingly, the scaled mode frequencies are presented in Figure 5.13.

As the beam’s thickness-to-length ratio decreases, the scaled modal frequencies con-

tinue to approach integer values representing string solutions. Due to the apparent

superiority of the Cubic C1 element, the Linear C1 element will no longer be used

in this analysis. So far only undamped systems have been considered. To properly

study system dynamics, damped response should be included.

5.3.4 Damped Response. Forced response computation of a

dynamic system often requires the addition of damping terms. Damping terms are

nonconservative contributions and can’t be directly inserted into the system La-

grangian. This effect is normally inserted directly into the equations of motion,
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Figure 5.13 Cubic C1 Modes: (a) First 5 Mode Shapes (b) Normalized Frequencies

and values are assigned through experimental evaluation. The Method of Integral

Multiple Scales (MIMS) will require a similar approach.

Analytic solutions discussed in Chapters III and IV indicate the damping terms

commonly fall one level lower in the asymptotic expansion. Finite element methods

commonly model the damping term using the known mass and stiffness matrices.

Rayleigh or proportional damping is one example (65):

[C] = α [K] + β [M ] (5.92)

where α and β are related to critical damping ξ and frequency ω through

ξ =
1

2

(
αω +

β

ω

)
. (5.93)

The parameters α and β are considered of order ε for the materials discussed herein.

To understand how the damping terms are related to the system presented in

Equations 5.69 through 5.71, remove any temporal related scaling terms (dropping

5-26



www.manaraa.com

[ ] brackets again):

M0d̈0 +K0d0 = −Γ0 (5.94)

M0d̈1 +K0d1 = −Γ1 −M1d̈0 −K1d0 (5.95)

M0d̈2 +K0d2 = −Γ2 −M1d̈1 −K1d1

−M2d̈0 −K2d0. (5.96)

...

Multiplying each level by its corresponding ε order, and summing the system, the

following results:

M0

n∑

i=0

εid̈i +K0

n∑

i=0

εidi =−
n∑

i=0

εiΓi − εM1

n−1∑

i=0

εid̈i − εK1

n−1∑

i=0

εidi

− ε2M2

n−2∑

i=0

εid̈i − ε2K2

n−2∑

i=0

εidi − · · ·
(5.97)

As n→∞, the system can be reorganized as

Md̈+Kd = −Γ (5.98)

where

M =M0 + εM1 + ε2M2 + · · ·

K =K0 + εK1 + ε2K2 + · · ·

Γ =Γ0 + εΓ1 + ε2Γ2 + · · ·

d =d0 + εd1 + ε2d2 + · · · .

(5.99)

Combining this result with Equation 5.92, a damping matrix expansion is suggested

C = εC1 + ε2C2 + · · · (5.100)
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where

Ci = α1Ki−1 + β1Mi−1. (5.101)

This term can then be inserted into Equations 5.83 through 5.85, producing:

M0d̈0 +K0d0 = −Γ0 (5.102)

M0d̈1 +K0d1 = −Γ1 − [2ω1M0 +M1] d̈0 − C1ḋ0 −K1d0 (5.103)

M0d̈2 +K0d2 = −Γ2 − [2ω1M0 +M1] d̈1 − C1ḋ1 −K1d1

−
[(
2ω2 + ω21

)
M0 + 2ω1M1 +M2

]
d̈0

−C2ḋ0 −K2d0 (5.104)

The solution to Equation 5.102 is found through a standard eigenanalysis

method assuming d0 = ν0e
iω0t:

[K0 − λ0M0] ν0 = 0 (5.105)

where ω0 =
√
λ0, the first order frequencies of the system corresponding to the first

order mode shapes, ν0. Continuing this methodology to Equation 5.103

[K0 − λ0M0] ν1 = − [K1 + iω0C1 − λ0 (2ω1M0 +M1)] ν0 (5.106)

As discussed earlier, the space spanned by ν0 completely defines all mode

contributions allowed in Equation 5.105. Any contribution to the solution through ν1

must then be orthogonal to the ν0 solution. We can impose this by premultiplying

Equation 5.106 by the solution of Equation 5.105. The right side, with only one

undetermined value, can be solved:

ω1 =
νT0 [K1 + iω0C1 − λ0M1] ν0

2λ0νT0M0ν0
(5.107)
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providing the first ω correction.

Continuing this procedure to the next level, the next ω correction can be

calculated using the same procedure from Equation 5.104:

ω2 =
νT0 [K2 + i (ω0C2 + ω1C1)− λ0 (ω

2
1M0 + 2ω1M1 +M2)] ν0

2λ0νT0M0ν0
(5.108)

The damped response frequencies can then be computed through Equation 5.16.

Further expansion of this method, to include forced response is introduced in the

next chapter.

This chapter introduced the Method of Integral Multiple Scales as a new

method for solving some dynamic systems which can be represented in Lagrangian

form. After presenting a short analytical beam-string example, this method was

applied through a new finite element approach. By using a new set of parametric

shape functions based on beam-strings developed in Appendix B, the power of this

method was revealed. Both shape function sets can be regarded as C1 class because

they represent both displacements and displacement rates, while allowing extremely

small bending stiffness. A ‘Linear’ set, incapable of modeling internal curvature, was

compared to a ‘Cubic’ set, which does allow for internal curvature. Applying these

shape functions to the beam-string example in both static and dynamic analysis

indicated the supremacy of the ‘Cubic’ set. Based on the results of this chapter, this

method can be used to analyze more complicated non-linear systems of interest.
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VI. Nonlinear Finite Element

Solutions
The Method of Integral Multiple Scales (MIMS) was introduced in Chapter

V as a method to model dynamic systems which can be represented in Lagrangian

form. The linear beam example clearly shows the ability of this method to produce

adequate solutions. While the simple beam did provide interesting insight into the

method itself, the real power of the method can be better presented through nonlinear

applications, such as those systems analytically solved in Chapters III and IV. In

this chapter, these analytical solutions are expanded.

6.1 Nonlinear Beam-String

The nonlinear piezoelectric beam analytically solved in Chapter III can be

analyzed using a finite element approach based on the Method of Integral Multiple

Scales (MIMS) introduced in Chapter V. Equations 3.1 through 3.7, neglecting the

spring boundary conditions, are used here to derive the system Lagrangian.

6.1.1 System Derivation. In Chapter III, the equations of

motion were derived prior to scaling. To apply MIMS, the Lagrangian must be

scaled. Referring to Figure 3.1, ds and dx are the deformed and undeformed beam

infinitesimal lengths, respectively, and related through the following vector equation:

d~s = 〈1 + u,x, w,x〉dx (6.1)

and, after expansion, results in the following scalar equation:

ds =

(
1 + u,x +

1

2
w2,x + u2,x +

1

8
w4,x +

1

2
u,xw

2
,x . . .

)
dx (6.2)
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Applying this to the energy formulation, the Lagrangian can then be formed

L =

∫

V

[
1

2
ρ
(
u2,t + w2,t

)
−

1

2
E

(
u,x +

1

2
w2,x +

1

2
u,xw

2
,x −

1

8
w4,x

)2
+

Ezw,xx

(
u,x +

1

2
w2,x +

1

2
u,xw

2
,x −

1

8
w4,x

)
−

Ez2w2,xx − Eε0

(
u,x +

1

2
w2,x +

1

2
u,xw

2
,x −

1

8
w4,x

)
+

Eε0zw,xx +
N0
A

(
u,x +

1

2
w2,x +

1

2
u,xw

2
,x −

1

8
w4,x

)
−

N0
A
zw,xx

]
dV +

∫

x

P (w + u,xw − w,xu) dx

(6.3)

where

ε0 =
d31V

t
+ αT. (6.4)

Equations 3.6 are again used to reduce this three-dimensional system to a single

dimension. The resulting Lagrangian is

L =

∫

x

[
1

2
ρA
(
u2,t + w2,t

)
−

1

2
EA

(
u,x +

1

2
w2,x +

1

2
u,xw

2
,x −

1

8
w4,x

)2
+

EZw,xx

(
u,x +

1

2
w2,x +

1

2
u,xw

2
,x −

1

8
w4,x

)
−

EIw2,xx − EAε

(
u,x +

1

2
w2,x +

1

2
u,xw

2
,x −

1

8
w4,x

)
+

EZεw,xx +N0

(
u,x +

1

2
w2,x +

1

2
u,xw

2
,x −

1

8
w4,x

)
−

Nzw,xx + P (w + u,xw − w,xu)

]
dx.

(6.5)
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Equations 3.15 can now be applied and the scaled non-linear laminated piezother-

moelectric beam’s Lagrangian is

L =

∫ 1

0

[
1

2

(
u2,t + w2,t

)
−

1

2
η−1

(
u,x +

1

2
w2,x +

1

2
u,xw

2
,x −

1

8
w4,x

)2
+

EZ2w,xx

(
u,x +

1

2
w2,x +

1

2
u,xw

2
,x −

1

8
w4,x

)
−

ε2w2,xx − (1− EAε2)

(
u,x +

1

2
w2,x +

1

2
u,xw

2
,x −

1

8
w4,x

)
+

EZε3w,xx −Nzw,xx + P2 (w + u,xw − w,xu)

]
dx.

(6.6)

where the subscript numbering indicates the specific parameter’s relative order based

on the order os ε. With the correctly scaled Lagrangian available, MIMS can be

applied.

As previously used in Chapter V, the boundary layer areas are introduced

through the stretching variables (or spatial scales):

u(x, t)→ u(η, ξ, ζ, t; ε)

w(x, t)→ w(η, ξ, ζ, t; ε)
(6.7)

where η = x, ξ = x
ε
, and ζ = 1−x

ε
. Applying the chain rule to x = x(η, ξ, ζ; ε), the

differentials are transformed

d
dx

= ∂
∂η

+ 1
ε

[
∂
∂ξ
− ∂

∂ζ

]
(6.8)

d2

dx2 = ∂2

∂η2 + 2
ε

[
∂2

∂ξ∂η
− ∂2

∂ζ∂η

]
+ 1

ε2

[
∂2

∂ξ2
+ ∂2

∂ζ2
− 2 ∂2

∂ξ∂ζ

]
. (6.9)
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Substituting the expansions (also introducing temporal scaling)

t = ωτ (6.10)

Tn = εnτ (6.11)

ω = ω0 + εω1 + ε2ω2 + · · · (6.12)

N(η, ξ, ζ; ε) = N0(η, ξ, ζ) + εN1(η, ξ, ζ) + ε2N2(η, ξ, ζ) + · · · (6.13)

Nu(η, ξ, ζ; ε) = Nu0(η, ξ, ζ) + εNu1(η, ξ, ζ) + ε2Nu2(η, ξ, ζ) + · · · (6.14)

d(t; ε) = ε2d2(t) + ε3d3(t) + ε4d4(t) + · · · (6.15)

du(t; ε) = ε3du3(t) + ε4du4(t) + ε5du5(t) + · · · (6.16)

u(η, ξ, ζ, t; ε) = Nu(η, ξ, ζ; ε)du(t; ε) (6.17)

w(η, ξ, ζ, t; ε) = N(η, ξ, ζ; ε)d(t; ε) (6.18)

where ω0 = 1 as the original system was effectively scaled by ω0, into Equation 6.6

produces a multiple scales Lagrangian expansion. Separating the resulting expansion

into ε-order groupings, produces a Laurent series of Lagrangians of increasing order:

L = ε−2L−2 + ε−1L−1 + L0 + εL1 + ε2L2 + · · · (6.19)

Once again, selecting the order of precision is equivalent to selecting an element

(Li) in the energy expansion. Applying Euler’s equations to the selected Lagrangian

element produces the system of equations which will produce the desired solution.

The functions produced through the application of Euler’s equations to Ln exists in

the set of functions produced through the application of Euler’s equations to Lm,

where m > n.
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Applying Euler’s equations to L2 produces the following decoupled system of

equations:

K−2d2 = 0 (6.20)

K−2d3 = −K−1d2 (6.21)

K−2d4 = −K−1d3 − Γ0 −M0d3,00 −K0d0 (6.22)

K−2d5 = −K−1d4 − Γ1 −M0d4,00 −K0d3

−2M0 (ω1d0,00 + d0,01)−M1d0,00 −K1d0 (6.23)

K−2d6 = −K−1d5 − Γ2 −M0d5,00 −K0d3

−2M0 (ω1d3,00 + d3,01)−M1d3,00 −K1d3

−M0

[
d2,11 + d2,02 + 4ω1d2,01 +

(
ω21 + 2ω2

)
d2,00

]

−2M1 (ω1d2,00 + d2,01)−M2d2,00 −K2d2 (6.24)

Mu0du3,00 = 0 (6.25)

where Ki represents system stiffness matrices, Mi and Mu0 represents system mass

matrices, and Γi represents system forcing. Additional equations of import are:

Nu3,ξ = Nu3,ζ

Nu4,ξ = Nu4,ζ

Nu5,ξ = Nu5,ζ

Nu6,ξ = Nu6,ζ

(6.26)

Equations 6.20 and 6.21 are the first two solvability equations. As discussed

in Chapter V, these drive the choice of shape functions necessary. Equations 6.26

presents an additional set of solvability conditions in this analysis. These indicate no

axial boundary layer effects exist, to this level, based on the assumptions and scaling

choices made earlier in this analysis. Additionally, the axial displacements are not
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present in the transverse displacement equations at the level of expansion presented.

Therefore, the axial displacements will not be considered in the remaining portion

of this beam analysis. This parallels the results found in Chapter III.

The various system matrices can be calculated by applying either of the shape

functions presented in Appendix B. The resulting matrices are:

K−2 = 0

K−1 = 0

K0 =

∫

x

F T
1 F1 +GT

1G1dx

K1 =

∫

x

F T
1 F2 + F T

2 F1 +GT
1G2 +GT

2G1dx

K2 =

∫

x

F T
2 F2 + F T

1 F3 + F T
3 F1 +GT

2G2 +GT
1G3 +GT

3G1 + EAε2G
T
1G1dx

(6.27)

M0 =

∫

x

NT
0 N0dx

M1 =

∫

x

NT
0 N1 +NT

1 N0dx

M2 =

∫

x

NT
1 N1 +NT

0 N2 +NT
2 N0dx

(6.28)

The forcing vectors are similarly produced:

Γ0 =

∫

x

−PNT
0 dx

Γ1 =

∫

x

(Nz3 − EZε3)F
T
1 − PNT

1 dx

Γ2 =

∫

x

(Nz3 − EZε3)F
T
2 − PNT

2 dx

(6.29)

As discussed in Chapter III, the actuation manifests itself through an axial

strain term (EAε2) and a boundary moment term (EZε3). The axial term modifies

the system stiffness and the boundary term acts as an applied forcing term. Removal
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of the piezothermal terms produces the same equations as the linear system produced

in Chapter V.

The multiple scales integral can be transformed to the scaled variables as

∫ x2

x1

f(x)dx =

∫ x2−x1
ε

0

∫ x2−x1
ε

0

∫ x2

x1

f(η, ξ, ζ)dηεdξεdζ. (6.30)

The undamped dynamic system of equations is then:

M0d2,00 +K0d2 = −Γ0 (6.31)

M0d3,00 +K0d3 = −Γ1 − (2ω1M0 +M1) d2,00 − 2M0d2,01 −K1d2 (6.32)

M0d4,00 +K0d4 = −Γ2 − (2ω1M0 +M1) d3,00 − 2M0d3,01 −K1d3

−
[(
ω21 + 2ω2

)
M0 + 2ω1M1 +M2

]
d2,00

−2 (2ω1M0 +M1) d2,01 −M0d2,11 − 2M0d2,02 −K2d2(6.33)

which represents the finite element equations of motion of the non-linear piezoelec-

tric beam string. Including damping terms, discussed in Chapter V, results in the

damped dynamic system of equations for a non-linear piezoelectric beam string:

M0d2,00 +K0d2 = −Γ0 (6.34)

M0d3,00 +K0d3 = −Γ1 − (2ω1M0 +M1) d2,00 − 2M0d2,01

−K1d2 − C1d2,0 (6.35)

M0d4,00 +K0d4 = −Γ2 − (2ω1M0 +M1) d3,00 − 2M0d3,01

−
[(
ω21 + 2ω2

)
M0 + 2ω1M1 +M2

]
d2,00

−K1d3 − C1d3,0 − C2d2,0 − C1d2,1

−2 (2ω1M0 +M1) d2,01 −M0d2,11 − 2M0d2,02 −K2d2(6.36)
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Additional effects can be introduced with increasing Lagrangian order selection.

This system can now be used to analyze problem solutions unattainable through

analytical methods.

Equation 6.15 is a function of ε, but this value is based on the global dimensions

of the beam. To more directly produce a finite element solution, as presented in

Chapter V, this value can be integrated into the system matrices. Beginning with

Equation 6.15, the equivalent displacement equation is:

d̂ = d̂2 + d̂3 + d̂4 (6.37)

where

d̂2 = ε2d2

d̂3 = ε3d3

d̂4 = ε4d4,

(6.38)

Equations 6.31 through 6.33 can be rescaled:

M̂0d̂2,00 + K̂0d̂2 = −Γ̂0 (6.39)

M̂0d̂3,00 + K̂0d̂3 = −Γ̂1 −
(
2ω̂1M̂0 + M̂1

)
d̂2,00 − 2M̂0d̂2,01

−Ĉ1d̂2,0 − K̂1d̂2 (6.40)

M̂0d̂4,00 + K̂0d̂4 = −Γ̂2 −
(
2ω̂1M̂0 + M̂1

)
d̂3,00 − 2M̂0d̂3,01

−Ĉ1d̂3,0 − K̂1d̂3

−
[(
ω̂21 + 2ω̂2

)
M̂0 + 2ω̂1M̂1 + M̂2

]
d̂2,00

−2
(
2ω̂1M̂0 + M̂1

)
d̂2,01 − M̂0d̂2,11 − 2M̂0d̂2,02

−Ĉ2d̂2,0 − Ĉ1d̂2,1 − K̂2d̂2 (6.41)
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Figure 6.1 Piezoelastic Laminated Beam Configuration

Property Kapton PVDF
Young’s Modulus (E) 406 ksi 261 ksi
Thickness Ratio (t) 0.006 in 0.003 in

Table 6.1 Linear Beam Element Properties

and

M̂0 =M0

M̂1 = εM1

M̂2 = ε2M2

K̂0 = K0

K̂1 = εK1

K̂2 = ε2K2

Ĉ1 = εC1

Ĉ2 = ε2C2

Γ̂0 = ε2Γ0

Γ̂1 = ε3Γ1

Γ̂2 = ε4Γ2

ω̂0 = ω0

ω̂1 = εω1

ω̂2 = ε2ω2

(6.42)

The response frequencies are now:

ω̂ = ω̂0 + ω̂1 + ω̂2 (6.43)

The solution methodology is identical to that presented in Chapter V. Each

level is solved in succession to produce an increasingly more accurate prediction.

6.1.2 Static Shaping. A piezoelastic laminated beam shown in

Figure 6.1 was modelled with the properties listed in Table 6.1. Using an etched

electrode covering the center third of the beam, the shape presented in Figure 6.2

results from only electrical potential application (d31V = 10−7). Each plot is the
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Figure 6.2 Piezoelastic Laminated Beam Corrections
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Figure 6.3 Piezoelastic Laminated Beam (+/-) Deflections
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result of successive solution orders. There is no deflection from the first order solution

due to the lack of any forcing term at that level. Notice the significant change in

shape through the two subsequent orders. The second order solution provides initial

peizoelectric moments, while the third order solution corrects the result through the

additional axial forcing terms. The addition of the fourth order correction clearly

shows a modest improvement to the predicted shape. Due to the significant increase

in computational effort necessary to provide the small correction, further analysis

can assume an adequate approximation considering only the first two correction

terms. Figure 6.3 illustrates the expected symmetric behavior resulting from opposite

actuation voltages.

The electrical interface regions are of particular interest. Modeling these re-

gions of step changes with standard finite elements requires significantly increased

grid densities. These standard modeling techniques are required to avoid the singu-

larities existing in this region. The method presented here overcomes this problem

and produces results more closely aligned with experimental observations (17).

6.2 Axisymmetric Plate-Membrane

The nonlinear axisymmetric piezoelectric plate analytically solved in Chapter

IV can also be analyzed using a finite element approach based on the Method of

Integral Multiple Scales (MIMS) introduced in Chapter V.

6.2.1 System Derivation. Equations 4.1 through 4.8, neglecting

the spring boundary condition, are used here to derive the system Lagrangian. In

Chapter IV, the equations of motion were derived prior to scaling. To apply MIMS,
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the Lagrangian must be scaled.

L =

∫

V

[
1

2
ρ
(
u2,t + v2,t + w2,t

)
−

E

1− ν2
ε0θ

[(
u,r +

1

2
w2,r

)
+ ν

1

r
u

]
+

Ez

1− ν2
ε0θ

[
w,rr + ν

1

r
w,r

]
−

E

1− ν2
ε0r

[
1

r
u+ ν

(
u,r +

1

2
w2,r

)]
+

Ez

1− ν2
ε0r

[
1

r
w,r + νw,rr

]
+

2E

1 + ν
ε0z

[
1

r
v − v,r

]
− E

1 + ν

[
1

r
v − v,r

]2
−

1

2

E

1− ν2

([
u,r +

1

2
w2,r

] [(
u,r +

1

2
w2,r

)
+ ν

1

r
u

])
−

1

2

E

1− ν2

(
1

r
u

[
1

r
u+ ν

(
u,r +

1

2
w2,r

)])
+

1

2

Ez

1− ν2

(
w,rr

[(
u,r +

1

2
w2,r

)
+ ν

1

r
u

])
+

1

2

Ez

1− ν2

([
u,r +

1

2
w2,r

] [
w,rr + ν

1

r
w,r

])
+

1

2

Ez

1− ν2

(
1

r
w,r

[
1

r
u+ ν

(
u,r +

1

2
w2,r

)]
+

1

r
u

[
1

r
w,r + νw,rr

])
−

1

2

Ez2

1− ν2

(
w,rr

[
w,rr + ν

1

r
w,r

]
+

1

r
w,r

[
1

r
w,r + νw,rr

])
+

N0r
H

[
u,r +

1

2
w2,r

]
− Nrz

H
w,rr +

N0θ
H

1

r
u− Nθz

H

1

r
w,r

]
dV+

∫

r

P (w + u,rw − w,ru) dr

(6.44)

where

ε0r = ε0θ =
d31V

t
+ αT (6.45)

N0r = N0θ (6.46)

Nrz = Nθz = 0. (6.47)

These parameters were chosen assuming symmetric edge loading and bidirectional

thermoelectric properties.
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Applying through-the-thickness integration using Equations 4.9, and the inde-

pendent variable and displacement scaling rules in Equations 4.18,the system can be

collapsed to the one-dimensional problem of interest (assuming symmetric actuation

and pretension, and the remaining scaling rules from Equation 4.18):

L =

∫

r

[
1

2

[
1

η2
(
u2,t + v2,t

)
+ w2,t

]

− ÊHεz

[
1

r
v − v,r

]
+ ÊHε

[(
u,r +

1

r
u

)
+

1

2
w2,r

]

− (1− ν̂)

[
1

r
v − v,r

]2
− ν̂

[
1

r
u

(
u,r +

1

2
w2,r

)]

− 1

2

[
u2,r +

1

r2
u2 + w2,r

]
−
[
1

r
u+ u,r +

1

2
u,rw

2
,r −

1

8
w4,r

]

− 1

2
ε2
(
w2,rr +

1

r2
w2,r

)
− D̂12

(
1

2
w,rw,rr

)

+ EZ11

[
w,rr

(
u,r +

1

2
w2,r

)
+

1

r2
uw,r

]

+ EZ12

[
1

r
uw,rr +

1

r
w,r

(
u,r +

1

2
w2,r

)]

+
(
Nz − ÊZε

)[1
r
w,r + w,rr

]
− P

[
w +

1

η
(u,rw − w,ru)

] ]
dr

(6.48)

where

EHεθ = EHεr

EZεθ = EZεr

ÊHε = EHε11 + EHε12

ÊZε = EZε11 + EZε12

ν̂ =
EH12

EH11

.

(6.49)
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Using the same method previously presented, the boundary layer areas are

introduced through the stretching variables (or spatial scales):

u(x, t)→ u(η, ξ, ζ, t; ε)

v(x, t)→ v(η, ξ, ζ, t; ε)

w(x, t)→ w(η, ξ, ζ, t; ε)

(6.50)

where η = x, ξ = x
ε
, and ζ = 1−x

ε
. Applying the chain rule to x = x(η, ξ, ζ; ε), the

differentials are transformed:

d
dx

= ∂
∂η

+ 1
ε

[
∂
∂ξ
− ∂

∂ζ

]
(6.51)

d2

dx2 = ∂2

∂η2 + 2
ε

[
∂2

∂ξ∂η
− ∂2

∂ζ∂η

]
+ 1

ε2

[
∂2

∂ξ2
+ ∂2

∂ζ2
− 2 ∂2

∂ξ∂ζ

]
(6.52)

Substituting the expansions (introducing temporal scaling)

t = ωτ (6.53)

Tn = εnτ (6.54)

ω = ω0 + εω1 + ε2ω2 + · · · (6.55)

N(η, ξ, ζ; ε) = N0(η, ξ, ζ) + εN1(η, ξ, ζ) + ε2N2(η, ξ, ζ) + · · · (6.56)

Nv(η, ξ, ζ; ε) = Nv0(η, ξ, ζ) + εNv1(η, ξ, ζ) + ε2Nv2(η, ξ, ζ) + · · · (6.57)

Nu(η, ξ, ζ; ε) = Nu0(η, ξ, ζ) + εNu1(η, ξ, ζ) + ε2Nu2(η, ξ, ζ) + · · · (6.58)

d(t; ε) = ε2d2(t) + ε3d3(t) + ε4d4(t) + · · · (6.59)

dv(t; ε) = ε3dv3(t) + ε4dv4(t) + ε5dv5(t) + · · · (6.60)

du(t; ε) = ε3du3(t) + ε4du4(t) + ε5du5(t) + · · · (6.61)

w(η, ξ, ζ, t; ε) = N(η, ξ, ζ; ε)d(t; ε) (6.62)

v(η, ξ, ζ, t; ε) = Nv(η, ξ, ζ; ε)dv(t; ε) (6.63)

u(η, ξ, ζ, t; ε) = Nu(η, ξ, ζ; ε)du(t; ε) (6.64)
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where ω0 = 1 as the original system was effectively scaled by ω0, into Equation 6.48

produces a multiple scales Lagrangian expansion. Separating the resulting expansion

into ε-order groupings, produces the now familiar Lagrangian expansion:

L = ε−2L−2 + ε−1L−1 + L0 + εL1 + ε2L2 + · · · (6.65)

Once again, selecting the order of precision is equivalent to selecting an element

in the energy expansion. Applying Euler’s equations to the selected Lagrangian

element produces the system of equations to produce the desired solution. The

functions produced through the application of Euler’s equations to Ln exists in the

set of functions produced through the application of Euler’s equations to Lm, where

m > n.

Again, the in-plane displacements are negligible to the order in this analysis.

Additionally, the axial displacements are not present in the transverse displacement

equations at the level of expansion presented. Therefore, the axial displacements will

not be considered in the remaining portion of this axisymmetric membrane analysis.

The system matrices can be calculated by applying either of the shape functions

presented in Appendix B. Applying the cubic C1 shape functions and simplifying,

the familiar resulting system is (damping terms added):

M0d2,00 +K0d2 = Γ0 (6.66)

M0d3,00 +K0d3 = Γ1 − 2M0 (ω1d2,00 + d2,01)−M1d2,00 −K1d2 − C1d2,0 (6.67)

M0d4,00 +K0d4 = −Γ2 − 2M0 (ω1d3,00 + d3,01)−M1d3,00 −K1d3 − C1d3,0 (6.68)

−M0

[
d2,11 + 2d2,02 + 4ω1d2,01 +

(
ω21 + 2ω2

)
d2,00

]

−2M1 (ω1d2,00 + d2,01)−M2d2,00 −K2d2 − C1d2,1 − C2d2,0

6-15



www.manaraa.com

The integral in cylindrical coordinates is

∫

A

dA =

∫

A

rdθdr, (6.69)

but with axisymmetric assumptions, it becomes

∫

A

dA = 2π

∫

r

rdr (6.70)

which results in the following multiple scales integral

∫ r2

r1

f(r)rdr =

∫ r2−r1
ε

0

∫ r2−r1
ε

0

∫ r2

r1

f(η, ξ, ζ)ηdηεdξεdζ. (6.71)

For simplicity, the following notation will be used to represent the multiple scales

integral ∫

ms

f(η, ξ, ζ)dms =

∫ r2−r1
ε

0

∫ r2−r1
ε

0

∫ r2

r1

f(η, ξ, ζ)ηdηεdξεdζ. (6.72)

The system stiffness matrices can now be computed through the following

K0 = 2π
∫
ms

[
GT
1G1 + F T

1 F1
]
dms (6.73)

K1 = 2π
∫
ms

[
GT
1G2 +GT

2G1 + F T
1 F2 + F T

2 F1
]
+

1

η
D̂12

[
GT
1 F1 + F T

1 G1
]
dms (6.74)

K2 = 2π
∫
ms

[
GT
2G2 +GT

1G3 +GT
3G1 + F T

2 F2 + F T
1 F3 + F T

3 F1
]

+
1

η
D̂12

[
GT
1 F2 + F T

2 G1 + F T
1 G2 +GT

2 F1
]

+
1

η2
[
GT
1G1

]
− EHε2

[
GT
1G1

]
dms (6.75)

where

Fi =[Ni,ξξ +Ni,ζζ −Ni,ξζ + 2 (Ni−1,ζη −Ni−1,ξη) +Ni−2,ηη]

Gi =[Ni,ξ −Ni,ζ ] +Ni−1,η].
(6.76)
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The system mass matrices are computed through

M0 = 2π

∫

ms

[
NT
0 N0

]
dms (6.77)

M1 = 2π

∫

ms

[
NT
0 N1 +NT

1 N0
]
dms (6.78)

M2 = 2π

∫

ms

[
NT
1 N1 +NT

0 N2 +NT
2 N0

]
dms. (6.79)

The forcing vectors are similarly produced:

Γ0 = 2π

∫

ms

−PNT
0 dms

Γ1 = 2π

∫

ms

[(
Nz3 − ÊZε3

)
F T
1 − PNT

1

]
dms

Γ2 = 2π

∫

ms

[(
Nz3 − ÊZε3

)(
F T
2 +

1

η
GT
1

)
− PNT

2

]
dms

(6.80)

Again, the actuation manifests itself through an axial strain term (EAε2) and

a boundary moment term (EZε3) which are evident here. The axial term modifies

the system stiffness and the boundary term acts as an applied forcing term. This

system can be used to analyze problem solutions unattainable through analytical

methods.

Two piezoelastic laminated membrane patterns are considered and shown in

Figure 6.4 with the properties in Table 6.2. The first pattern consists of an electrode

etching equally splitting the radius. The second pattern has three concentric elec-

trode etchings of equal radial lengths. More etching patterns are obviously possible,

but these can provide the necessary initial insight for more complicated design con-

siderations. These patterns will indicate the effect of increasing the electrode area as

well as providing concentric rings of potential surface allowing different potentials.

Both shaping and dynamic response studies can be performed.
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Pattern 1

Pattern 2

Figure 6.4 Piezoelastic Laminated Membrane Etching Patterns

Property Kapton PVDF
Young’s Modulus (E) 406 ksi 261 ksi
Thickness Ratio (t) 0.006 in 0.003 in

Table 6.2 Membrane Element Properties

6.2.2 Static Shaping. Chapter IV presented the use of Zernike

coefficients as a good mechanism to compare the effects of shape modifications. Due

to the extremely small displacements present in the membranes modelled, a reflected

wavefront aberration can be approximated as twice the surface displacement. Ap-

pendix A discusses the mapping method between wavefront aberrations and Zernike

coefficients.

Several configurations are presented in Table 6.3 where the sign indicates the

relative voltage potential in each area. The selected grid density, as in any finite

element method, plays an important role in the accuracy of the solution. Figure

6.5 presents the result of increasing the number of elements applied to a pressurized

membrane. It’s clear increasing the number of elements improves the apparent so-

lution, as expected. Figure 6.6 illustrates the result of the piezoelectric effects when

configuration 0 is concerned. The membrane cups, causing noticeable deflection.

Figure 6.7 presents a graphic of the shape deflection of each remaining config-

uration, when only piezoelectric actuation is considered. The effect of the actuation

in each pattern area is clearly evident.

Figures 6.8 through 6.12 display the effects of varying edge tension, pressure,

and electrical potential for each indicated configuration. While the effects are directly
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Configuration Pattern Area a Area b Area c
0 1 + +
1 1 0 +
2 2 0 + +
3 2 0 + -
4 2 0 + 0

Table 6.3 Membrane Configurations

Figure 6.5 Configuration 0 Grid Density Effects (Pressurized)

proportional to the voltage applied, regardless of pattern, the effect due to increasing

tension seems to drop off. This is expected, based on previously published analytical

and experimental results (34, 44).

The center graphs for each configuration present the result of various tension

per thickness values. The extreme left portion of these graphs are suspected numeri-

cal breakdowns due to ‘boundary layer’ encroachment rather than a true mechanical

phenomenon.
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Figure 6.6 Configuration 0 Piezoactuation Effects (Unpressurized)

Configuration 1 Configuration 2

Configuration 3 Configuration 4

Figure 6.7 Unpressurized Piezoactuated Displacement Shapes
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Figure 6.8 Configuration 0 Zernike Modifications (10 Elements)
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Figure 6.9 Configuration 1 Zernike Modifications (10 Elements)
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Figure 6.10 Configuration 2 Zernike Modifications (9 Elements)
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Figure 6.11 Configuration 3 Zernike Modifications (9 Elements)
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Figure 6.12 Configuration 4 Zernike Modifications (9 Elements)
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Figure 6.13 Configuration Zernike Coefficient Comparisons

Figure 6.13 illustrates the effective difference between each configuration under

a 2000 lb/in tension load and applying a potential of d31V = 10−8. The effect of

pattern placement seems to have greatest effect on Zernike Modes 1 and 13.

6.2.3 Natural Response. The top graph in Figure 6.14 displays

the effects of varying edge tension on the dynamic mode shapes. Notice similar

results to those discussed in the previous section. Edge tension changes will have

negligible effects over the global wavefront.

The bottom two graphs in Figure 6.14 display the effects of varying edge tension

on the natural frequencies. Since the tension has a direct effect on the natural fre-

quency, these are normalized to the fundamental mode. As the tension is increased,
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Figure 6.14 Mode Shape Zernike Changes

the frequencies approach the corresponding pure membrane modal frequencies. The

middle graph presents the normalized frequency, while the lower represents the ratio

of the computed frequencies to pure circular membrane frequencies. This is ex-

pected since as the tension gets very large, the ‘smallness’ parameter in the analysis

approaches zero. This, in effect, eliminates the plate-like behavior, leaving purely

membrane response.

6.2.4 Forced Response. The forced response of an unpressurized

membrane mirror is of particular interest. Removing the frequency expansion (ωi),
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the system becomes:

M0d2,00 +K0d2 = −Γ̂0 (6.81)

M0d3,00 +K0d3 = −Γ̂1 −M1d2,00 − 2M0d2,01

−K1d2 − C1d2,0 (6.82)

M0d4,00 +K0d4 = −Γ̂2 − 2M1d3,00 − 2M0d3,01

−M2d2,00 − 4M1d2,01 −M0d2,11 − 2M0d2,02

−C1d3,0 − C2d2,0 − C1d2,1 −K1d3 −K2d2 (6.83)

where periodic excitation is applied producing:

Γ̂0 = 0 (6.84)

Γ̂1 = Γ1e
i(ωkT0+δT1) (6.85)

Γ̂2 = Γ2e
i(ωkT0+δT1) (6.86)

and the mass, stiffness and damping matrices are as previously defined. The ωk term

is the center frequency to be aligned with a specific mode, and δ term is inserted as

a detuning parameter to allow analysis near that specific mode. Assuming periodic

response

dm = amνm(T1, T2, ...)e
iωT0 , (6.87)

Equation 6.81 represents a linear eigenvalue problem,

[K0 − λM0] ν2 = 0 (6.88)

where λ = ω2. Solutions to this equation are a set of eigenvalue, mode shape pairs

(λj, ν2j) which define the 1st order natural response of the system. Applying this

result to the next level (Equation 6.82), the solution can can be attained.
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Inserting Equation 6.87 into Equation 6.82:

a3 [K0 − λM0] ν3e
iωT0 =− Γ1e

i(ωkT0+δT1)

− a2 [K1 + iωjC1 − λjM1] ν2je
iωjT0

− 2ia2ωjM0ν2j,1e
iωjT0

(6.89)

For this system to balance correctly, ω = ωj = ωk, removing all but the kth

mode from the 1st order solution. The resulting equation becomes:

a3 [K0 − λkM0] ν3 =− Γ1e
iδT1

− a2 [K1 + iωkC1 − λkM1] ν2k − 2ia2ωkM0ν2k,1

(6.90)

Further, ν2j can only be a function of T1 through the following relationship:

ν2k = ν̂2k(T2)e
iδT1 (6.91)

for the system to balance correctly, leaving:

a3 [K0 − λkM0] ν3 =− Γ1 − a2 [K1 + iωkC1 − λkM1 − 2δωkM0] ν2k (6.92)

The right-hand-side must lie in the null-space of the adjoint of the left-hand-

side. Since the left-hand-side is self-adjoint, this simply means the right-hand-side

must be orthogonal to the solutions from Equation 6.88:

νT2k (Γ1 + a2 [K1 + iωkC1 − λkM1 − 2δωkM0] ν2k) (6.93)

The only unknown here is the amplitude of the first order response:

a2 =
−νT2kΓ1

νT2k [K1 + iωkC1 − λkM1 − 2δωkM0] ν2k
(6.94)
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Figure 6.15 Membrane Forced Response (Damping Effects)

Applying this value back into Equation 6.92, the right-hand-side now resides

only in the space remaining after removal of ν2k. Because the left-hand-side of

Equation 6.92, with λk, spans all but the space of ν2k, there is a unique solution.

This equation becomes:

a3 [K0 − λkM0] ν3 = B1 (6.95)

where B1 is the constant vector resulting from the insertion of the known a2 into

Equation 6.92. Solving for the a3 terms produces the contributory responses of each

mode other than ωk. Using this method, the forced response can be approximated.

Applying this to the previously described unpressurized membrane, Figure 6.15

shows an effective shift of the first mode, regardless of damping. The damping values

were chosen to illustrate the effect, not to imply actual known values. Additionally,
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it’s clear significantly higher deflections are possible dynamically than statically.

This could imply, while a piezopolymer laminate may have limited effect for static

shape corrections due to the local effects it produces, dynamically the system can

provide a much stronger response. This would mean a laminate design may provide

good active vibration control over the large surface area of the reflector.

6.3 Very Large Reflectors

Figure 6.16 Very Large Membrane Pattern

No additional limitations have presented themselves when applying this system

to a very large reflector. The pattern of 4 concentric rings of equal radial lengths

shown in Figure 6.16, with actuation values defined in Table 6.4, is an example of the

actuation configuration which can be created. Using the same material properties

previously used and described in 6.2, while only changing the radial length to 210

inches, Figure 6.17 presents a graphic of the result of applying the graduated voltage

potential to a 10 meter class reflector.

Area d31V
a 10−7

b 2
3
10−7

c 1
3
10−7

d 0

Table 6.4 Actuation Voltages

With the significant decrease in thickness to radius ratio, the model was able

to produce reasonable results with only 82 degrees of freedom. As a result, the center

portion of the membrane mirror was able to produce a deflection of approximately
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Figure 6.17 Very Large Membrane Shape

0.3 in. No attempt to optimize or find the regions where this model would break

down was attempted.

This chapter presented the use of the Method of Integral Multiple Scales

(MIMS) applied to nonlinear beams and axisymmetric plates. MIMS was applied

through a finite element methodology producing results for systems more compli-

cated than analytical solutions can support. A nonlinear beam-string and an ax-

isymmetric circular membrane were modelled allowing partial electrode coverage.

The partial coverage allows design flexibility to tailor the distribution to the require-

ment to be satisfied.
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VII. Summary and

Recommendations

7.1 Summary

The research herein introduced a new method to analyze piezothermoelastic

laminated membranes to optical precision. The current analytical and computational

analysis tools available to an analyst are either limited to homogenous materials,

unable to adequately model a laminated membrane, or fundamentally based on ma-

terials of significantly higher stiffness, all resulting is significant error when optical

precision is considered. A finite element approach was developed which provides ex-

treme precision, when compared to standard tools available. This new methodology,

based on the Method of Integral Multiple Scales, first introduced herein, can provide

asymptotic solutions for systems containing ‘small’ parameters.

Chapter II presented a broad background illustrating the technical challenges

addressed with this research. The Directed Energy Directorate of Air Force Research

Laboratory (AFRL/DE), in concert with a variety of private industry partners, con-

tinue in their attempt to produce an inflatable optical space reflector. Focusing on

static shaping, material and manufacturing limitations continue to be eliminated.

While the accuracy of a post deployment optical reflector may be achievable

one day, the ability to compensate for dynamic effects resulting from the thermal

environment and vibration control resulting from maneuvering requirements demand

some form of active control. Most control methodologies have concentrated on edge

control strategies. These methods appear far too limited for actual implementation

as the effect dissipated quickly from the edge. A global method is required.

When considering optical reflectors, the ability to control the surface can be

related to the reflected wavefront. From a systems point-of-view, additional technol-
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ogy can be brought to bare, reducing the precision required. Real-Time Holography

(RTH) is one example of a post-processing technique which may be able to correct

hundreds of wavelengths of error. This significantly reduces the necessary precision

of the reflector itself.

The idea of laminating layers of piezoelectric polymers on the inflatable surface

is not new. These materials can modify the shape through a direct relationship

between an applied actuation voltage and the material’s strain. The area of actuation

can be controlled by the pattern of electrode coverage on the material. Analytic

solutions, however are incapable of providing solutions for realistic designs.

Finite element methods, an important structural analysis tool, can’t provide

accurate solutions for these systems. The weak bending stiffness and dramatically

different thickness and length dimensions cause significant computational challenges.

Specialized packages have been developed, providing sufficient analysis tools for sim-

plified designs. The Finite Element Analysis of Inflatable Membrane (FAIM) and

Axisymmetric Membrane (AM) codes were two such tools.

FAIM provided geometrical and material nonlinear analysis capabilities for

an isotropic material, but didn’t account for in-plane displacements. AM was an

attempt to correct this limitation, but again assumed isotropic material and only

axisymmetric designs.

Significant research has been directed toward piezothermoelastic material mod-

eling, but are not capable of modeling membranes effectively. The vast majority of

these efforts have focused on ceramic piezoelectric materials. A new modeling tech-

nique is needed allowing for the analysis of a piezothermoelastic laminated mem-

brane.

Chapter III presented the introductory concepts through a thorough develop-

ment of an analytical solution of a piezothermoelectric beam-string representing a
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cross-section of an electrically actuated inflatable structural element. The localized

nature of the applied forces are clearly exhibited as small boundary layer effects.

The geometrically nonlinear equations of motion for a planar beam-string were

derived from basic energy principles. The laminate effects were included by col-

lapsing the through-the-thickness parameters to effective forces and moments acting

on the beam. Using three perturbation techniques, 2nd order solutions were de-

veloped producing static shaping as well as forced response predictions for a thin

piezothermoelastic laminated beam.

Chapter IV further expanded this development to a circular plate-membrane

model. A circular piezothermoelastic membrane of per-layer isotropic material was

modelled. The equations of motion for the laminate in cylindrical coordinates were

derived. Using the methodology developed in Chapter III, the solution for an ax-

isymmetric piezothermoelastic membrane was produced. The effects actuating forces

have on a reflected wavefront were discussed through the presentation or Zernike co-

efficient values. Since optical reflectors are the ultimate goal, this method provided

a better comparison.

Chapter V presented the development of a new finite element method using

asymptotic expansion theory. The Method of Integral Multiple Scales (MIMS) was

introduced, and a linear beam model was to illustrate this novel method. A static

solution method as well as dynamic response were discussed, including damping

effects. The result of this method was compared to both an independently produced

analytical prediction as well as a standard finite element method prediction. MIMS

produced a predicted solution over three orders of magnitude more accurate than

the standard finite element methodology.

Chapter VI expanded this method into the solution of nonlinear problems of

concern in this research. MIMS was applied to the nonlinear beam and circular plate

problems presented in Chapters III and IV. It was discovered that the method itself

is not altered for nonlinear problems. While a nonlinear first order equation is often
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the result in a perturbation approach, due to the parameters in the problem studied

herein, no such problem occurred. All levels continue to produce linear equations.

Due to the actuation applied, MIMS was expanded to investigate the forced

response of the laminated axisymmetric membrane. It was observed that signifi-

cantly higher response amplitude resulted from dynamic actuation than from static.

This implies possible use for active vibration control. Additionally, a very large

10 meter class antenna was modelled, indicating surface deflections of thousands of

wavelengths of deflection is available for such a large reflector.

MIMS may not be limited to just energy-based Lagrangian; it was only studied

for that specific application here. The concept might be applicable to a wider range

of applications. It can, however, clearly add to the structural analysis toolkit of an

analyst when structures with very low bending stiffness are concerned, such as an

inflatable structure.

Inflatable space structures has been an enabling technology for almost fifty

years. From ECHO I to the Inflatable Antenna Experiment (IAE), various solutions

have relied on this technology, as do future systems such as the Next Generation

Space Telescope (NGST). The goal of using inflatable structures as optical reflectors

pushes the industry’s limitations far beyond its current capabilities. The information

contained herein should provide additional analysis tools useful in moving closer

toward that goal.

7.2 Recommendations for Future Research

1. As with all mathematical or computational results, experimental validation is

the only true measure of accuracy. Current manufacturing limitations hinder

the creation of the membranes studied in this research.

(a) Expanding Wagner’s research (17) to include multiple axisymmetric rings

can verify correct model shaping predictions.
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(b) Further experimental research should be focused on dynamic response and

active damping within a vacuum.

2. The assumed orders of magnitude for the parameters used in the mechanics

development herein were specifically tailored to the problem at hand. Sig-

nificant research opportunities exist expanding these assumptions for broader

applications.

3. The new Method of Integral Multiple Scales (MIMS) clearly appears to be

rich with future research directions. The wealth of reference material relating

to multiple scales should be applied toward MIMS in an effort to evaluate its

functional space.

4. MIMS appears most appropriate when applied through a finite element pro-

cedure. This application has many research paths. A couple are mentioned

here:

(a) Using the methods presented herein, triangular and rectangular element

methodologies should be produced to support arbitrary geometries. This

would allow analysis of framing designs using tubular structures, or even

large scale sheets such as solar sails.

(b) Analysis of arbitrary circular piezothermoelastic membrane reflectors through

the finite element method would allow the creation of a comprehensive

design capability.

5. The methodology presented herein required each element to have the same ε

value. To be truly useful as a general purpose methodology, the relaxation of

this requirement should be studied.

(a) Directly relating the global ‘smallness’ parameter to the elemental expan-

sion parameter in the shape functions could allow varying element sizes.

(b) Further expanding this approach, the method should be expanded to han-

dle different types of elements.
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Through the development of these contributions, a comprehensive set of an-

alytical and numerical solutions are presented to aid in the further development of

inflatable optical reflectors. The introduction of MIMS promises far-reaching impact

as a solution methodology for many areas beyond the specific application herein.
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Appendix A. Structural Modes

vs. Optical Modes
Optical membrane reflectors are often analyzed from a purely structural point-

of-view. From a systems view, the structural response is important, but only to

the extent that it impacts the overall mission. An optical reflector, whether a thin

membrane or a glass mirror, is only as good as the wavefront produced. Mechanical

analysis of a circular membrane includes the dynamic vibration modes, while an

optical analysis would include the wavefront aberrations.

In this appendix, vibration modes of a circular membrane are introduced as

well as a common mathematical wavefront definition using a series of orthogonal

Zernike functions. A section is also included which presents a method to map struc-

tural shapes to these Zernike polynomials. A direct mapping is only available for

continuous functions. Using intermediate functions, based on Zernike functions, the

mapping can be accomplished.

A.1 Vibration Modes

Circular membrane displacement can be represented mathematically, after scal-

ing, by the two-dimensional wave equation:

∂2

∂t2
w(r, θ, t)−∇2w(r, θ, t) = 0 (A.1)

where

∇2 = ∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
. (A.2)

The solution to this equation, found in any advanced mathematics textbook, results

in a system of orthonormal circular membrane vibration mode shapes in terms of
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Bessel functions (70):

W0n (r, θ) = A0nJ0 (β0nr) , n = 1, 2, . . .

Wmnc (r, θ) = AmncJm (βmnr) cosmθ, m, n = 1, 2, . . .

Wmns (r, θ) = AmnsJm (βmnr) sinmθ, m, n = 1, 2, . . .

(A.3)

or in normalized dimensional form:

W0n (r, θ) =
1√

πρaJ1(β0na)
J0 (β0nr) , n = 1, 2, . . .

Wmnc (r, θ) =
√
2√

πρaJm+1(βmna)
Jm (βmnr) cosmθ, m, n = 1, 2, . . .

Wmns (r, θ) =
√
2√

πρaJm+1(βmna)
Jm (βmnr) sinmθ, m, n = 1, 2, . . .

(A.4)

These modes are orthogonal through the relationship:

∫ 2π

0

∫ 1

0

Wm,j(r, θ)Wm,k(r, θ)rdrdθ = δij (A.5)

over the unit circle, where δij is the kronecker delta.

The βmn values represent the zeros of the corresponding Bessel function Jm.

Figure A.1 illustrates a few of these modes for given values of m and n. The double

images for m values over zero correspond to the sine and cosine shapes in Equation

A.4.

A.2 Optical Modes

If the transverse displacement of the circular membrane is very small, this

distortion can be treated as half of the distortion imparted on a wavefront after

reflection. Circular wavefronts, however, are often represented by different families

of orthogonal functions. The Zernike polynomial series is a commonly used set (71).
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Figure A.1 Membrane Vibration Modes

This family allows the wavefront distortion to be defined as:

w(ρ, θ) =
k∑

n=0

n∑

m=0

AmnUmn(ρ, θ) =
L∑

r=0

ArUr(ρ, θ) (A.6)

where L represents the maximum power. The relationship between r and n,m can

be represented by:

r =
n(n+ 1)

2
+m+ 1 (A.7)

which is not a unique mapping, but is used here. The Zernike ‘modes’, Unm, are

represented by

Unm(ρ, θ) = Rmn(ρ)

[
sin

cos

]
(n− 2m)θ (A.8)

where

Rmn(ρ) =
m∑

s=0

(−1)s (n− s)!

s!(m− s)!(n−m− s)!
ρ(n−2s). (A.9)
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Figure A.2 Zernike Modes

When n− 2m > 0, the antisymmetric function (sin) is used. When n− 2m < 0, the

symmetric function (cos) is used. Note: Only positive powers of ρ are maintained.

These modes are orthogonal through the relationship:

∫ 2π

0

∫ 1

0

Umj(ρ, θ)Umk(ρ, θ)ρdρdθ =
π

2(n+ 1)
δjk (A.10)

over the unit circle.

Figure A.2 illustrates the Zernike modes for given m and n values. The upper

three-dimensional plot in each cell represents an actual planar wavefront if an aber-

ration of the corresponding Zernike function exists. Under each plot is a contour

plot of the surface indicating the type of pattern such a wavefront would produce

in an interferometer. A cursory comparison between figures A.1 and A.2 indicates a
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n m r w01 w02 w03 w04 w05 w06 Zr
0 0 1 1.728 -0.494 0.25 -0.158 0.110 -0.084 1
1 0 2 0 0 0 0 0 0 ρ sin(θ)
1 1 3 0 0 0 0 0 0 ρ cos(θ)
2 0 4 0 0 0 0 0 0 ρ2sin(2θ)
2 1 5 -1.986 -1.090 0.672 -0.446 0.32 -0.244 2ρ2 − 1
2 2 6 0 0 0 0 0 0 ρ2 cos(2θ)
3 0 7 0 0 0 0 0 0 ρ3 sin(3θ)
3 1 8 0 0 0 0 0 0 (3ρ3 − 2ρ) sin(θ)
3 2 9 0 0 0 0 0 0 (3ρ3 − 2ρ) cos(θ)
3 3 10 0 0 0 0 0 0 ρ3 cos(3θ)
4 0 11 0 0 0 0 0 0 ρ4 sin(4θ)
4 1 12 0 0 0 0 0 0 (4ρ4 − 3ρ2) sin(2θ)
4 2 13 0.272 2.34 0.134 -0.396 0.378 -0.326 6ρ4 − 6ρ2 + 1
4 3 14 0 0 0 0 0 0 (4ρ4 − 3ρ2) cos(2θ)
4 4 15 0 0 0 0 0 0 ρ4 cos(4θ)

Table A.1 Zernike Decomposition of Symmetric Vibration Modes

relationship should exist. A mapping between vibration modes and Zernike modes

can therefore easily be created through application of orthogonality principles.

Table A.1 presents the decomposition of the first few vibration modes. As ex-

pected, the w0n vibration modes only affect the purely radial Zernike modes. Like-

wise the harmonic modes are mapped to like Zernike harmonics. While continuous

wavefront definitions can be directly correlated through the previous orthogonal-

ity relationships, a direct correlation between arbitrary discretized wavefronts and

Zernike polynomial coefficients is not quite as straight forward.

A.3 Numerical Wavefront Zernike Polynomial

Determination

Determination of the Zernike polynomial coefficients representing the circular

wavefront aberrations using a least-squares method requires intermediate orthogonal

polynomials. The remainder of this section is modified slightly from Malacara (71).
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Given N measured points with coordinates (ρn, θn) and corresponding wave-

front displacementsW ′
n measured with respect to a closed analytical functionW (ρ, θ),

the discrete variance v2 can be defined as:

v2 =
1

N

N∑

n=1

[W ′
n −W (ρn, θn)] (A.11)

In the case considered here, the analytic function can be represented as a linear

combination of predefined functions, Vr(ρ, θ), to be defined later:

W (ρn, θn) =
L∑

r=1

BrVr (ρn, θn) (A.12)

The best least squares fit is then calculated by minimizing the variation:

∂v

∂Bp

= 0 (A.13)

where p = 1, 2, . . . , L, which produces:

L∑

r=1

Br

N∑

n=1

Vr (ρn, θn)Vp (ρn, θn) =
N∑

n=1

W ′
nVp (ρn, θn) = 0 (A.14)

Requiring Vr to satisfy the following orthogonality condition:

∑N
n=1 Vr (ρn, θn)Vp (ρn, θn)∑N

n=1 V
2
p (ρn, θn)

= δrp (A.15)

where δrp is the kronecker delta. Using this relationship, the coefficients Br can be

calculated:

Br =

∑N
n=1W

′
nVp (ρn, θn)∑N

n=1 V
2
p (ρn, θn)

(A.16)
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Using Gram-Schmidt Orthogonalization, the intermediate polynomials can be

computed using the following relationship:

Vr (ρ, θ) = Ur (ρ, θ) +
r−1∑

s=1

DrsVs (ρ, θ) (A.17)

where r = 1, 2, . . . , L. Using the orthogonality principle (Equation A.15, we can

derive the Drs coefficients:

Drs = −
∑N

n=1 Ur (ρn, θn)Vp (ρn, θn)∑N
n=1 V

2
p (ρn, θn)

(A.18)

where r = 2, 3, . . . , L and p = 1, 2, . . . , r − 1.

A corresponding linear combination of Zernike polynomials:

W (ρ, θ) =
L∑

r=1

ArUr (ρ, θ) (A.19)

can now be defined using the coefficient definition:

Ar = Br + AqDqs (A.20)

where r = 1, 2, . . . , L, q = r+1, and Az = 0∀z < 0. Based on his procedure, Zernike

polynomial coefficients for arbitrary wavefronts can be computed.
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Appendix B. Asymptotic Shape

Functions
Application of the finite element method to a given problem is a balance be-

tween required output precision and computational resources available. The finite

element method involves substituting an assumed shape function/unknown displace-

ment pair for all dependent variables to be approximated. The simple one dimen-

sional string or rod model may use C0 elements since the functions defining their

motion are functions of only position. An example of a C0 shape function vector is

(65):

N(x)T =




L−s
L

L−s
L


 (B.1)

The linear nature of this function means values are linearly interpolated. Elements

created from this class of shape functions can not model nodal slopes, but may pro-

duce adequate results through post-processing adjustments. C0 elements, however,

are not adequate if the boundary conditions will be imposed through displacement

rates. More complicated C1 shape functions can be applied, but increase element

matrix size, and therefore computational speed can dramatically decrease. An ex-

ample of a standard C1 shape function vector is (65):

N(x)T =




1− 3x2

L2 + 2x3

L3

x− 2x2

L
+ x3

L2

3x2

L2 − 2x3

L3

−x2

L
+ x3

L2




(B.2)

If a beam-string solution requires C1 class shape functions, but is far too flex-

ible and causes locking problems when using standard C1 shape functions, another
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method is necessary. In an attempt to provide a better solution method, elements

which behave as beam-strings can better represent an extremely flexible structure.

B.1 Linear C1 Beam String Shape Functions

A simple beam-string of unit length with smallness parameter ε can be defined

by the scaled static equation of motion:

ε2
d4N

dx4
− d2N

dx2
= 0 (B.3)

with boundary conditions

N(0) = α dN
dx
|x=0 = β N(1) = γ dN

dx
|x=1 = δ. (B.4)

From Chapter III, a beam-string solution can be constructed using the method

of matched asymptotic expansions. The outer and inner solutions have the form:

N o(η) =
n∑

i=0

εi [ai0 + ai1η]

N i(ξ) =
n∑

i=0

εi
[
bi0 + bi1ξ + bi2e

−ξ]

N I(ζ) =
n∑

i=0

εi
[
ci0 + ci1ζ + ci2e

−ζ]

(B.5)

where the boundary conditions now become:

N0(0) = α dN0

dξ
|ξ=0 = 0 N0(1) = γ dN0

dζ
|ζ=0 = 0

N1(0) = 0 dN1

dξ
|ξ=0 = β N1(1) = 0 dN1

dζ
|ζ=0 = −δ

Nj(0) = 0
dNj

dξ
|ξ=0 = 0 Nj(1) = 0

dNj

dζ
|ζ=0 = 0

(B.6)

for all j > 1, where η = x, ξ = x
ε
and ζ = 1−x

ε
. Applying boundary conditions to the

inner solutions, then matching to the outer solutions, of each order i in succession
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Shape Function w(0) w,x(0) w(1) w,x(1)
Boundary Condition α β γ δ

N1 1 0 0 0
N2 0 1 0 0
N3 0 0 1 0
N4 0 0 0 1

Table B.1 Linear C1 Shape Function Boundary Conditions

results in the following asymptotic beam-string solution:

N(η, ξ, ζ; ε) =α + (γ − α) η

+ ε [(α− γ + β) + (2γ − 2α− β − δ) η

+(γ − α− β) e−ξ + (α− γ + δ) e−ζ
]

+ ε2 [(2α− 2γ + β − δ) + (4γ − 4α− 2β − 2δ) η

+(2γ − 2α− β − δ) e−ξ + (2α− 2γ + β + δ) e−ζ
]

+ ε3 [(4α− 4γ + 2β − 2δ) + (8γ − 8α− 4β − 4δ) η

+(4γ − 4α− 2β − 2δ) e−ξ + (4α− 4γ + 2β + 2δ) e−ζ
]
+ · · ·

(B.7)

where

α = w(0) γ = w(1)

β = w,x(0) δ = w,x(1)

Assuming an element behaves as a beam-string, this function can provide the

base for elemental shape functions. A shape functions set provides a mapping be-

tween the unknown nodal displacements and the predicted surface shape. Applying

the boundary conditions in Table B.1 to Equation B.7 produces the following shape
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Figure B.1 Linear C1 Shape Functions: (a) ε = 0.01 (b) ε = 0.1

function vector:

NT =




N1

N2

N3

N4




=




1− η

0

η

0




+ ε




1− 2η − e−ξ + e−ζ

1− η − e−ξ

−1 + 2η + e−ξ − e−ζ

−η + e−ζ




+ ε2




2− 4η − 2e−ξ + 2e−ζ

1− 2η − e−ξ + e−ζ

−2 + 4η + 2e−ξ − 2e−ζ

1− 2η − e−ξ + e−ζ




+ ε3




4− 8η − 4e−ξ + 4e−ζ

2− 4η − 2e−ξ + 2e−ζ

−4 + 8η + 4e−ξ − 4e−ζ

2− 4η − 2e−ξ + 2e−ζ




+ · · ·

(B.9)

A plot of these shape functions (Figure B.1) illustrates the behavior of these

functions. The shape functions plotted on the left and right are as a result of

selecting ε values of 0.01 and 0.1, respectively. As ε approaches zero, N approaches
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the standard string-type element. It should be clear, at this point, that while this

element may be able to support nodal slopes, it is unable to model curvature away

from its boundary.

B.2 Cubic C1 Beam String Shape Functions

In an attempt to allow the element to more closely represent the true nature

of the material, an internal node can be added, allowing for internal curvature. This

introduces two additional degrees of freedom, which can be compensated for with

two additional unknowns. This allows a cubic outer region.

Placing an internal node at the half way point, a simple beam-string of unit

length with smallness parameter ε can be calculated much the same as in the previous

section. The new boundary conditions; however, now must satisfy the internal node

values with boundary conditions

N(0) = α N(1) = γ N(1/2) = ψ

dN
dx
|x=0 = β dN

dx
|x=1 = δ dN

dx
|x=1/2 = φ.

(B.10)

The outer and inner solutions have the form

N o(η) =
n∑

i=0

εi
[
ai0 + ai1η + ai2η

2 + ai3η
3
]

N i(ξ) =
n∑

i=0

εi
[
bi0 + bi1ξ + bi2e

−ξ]

N I(ζ) =
n∑

i=0

εi
[
ci0 + ci1ζ + ci2e

−ζ]

(B.11)
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with boundary conditions:

N0(0) = α dN0

dξ
|ξ=0 = 0 N0(1) = γ dN0

dζ
|ζ=0 = 0 N0(1/2) = ψ dN0

dη
|η=1/2 = 0

N1(0) = 0 dN1

dξ
|ξ=0 = β N1(1) = 0 dN1

dζ
|ζ=0 = −δ N1(1/2) = 0 dN1

dη
|η=1/2 = φ

Nj(0) = 0
dNj

dξ
|ξ=0 = 0 Nj(1) = 0

dNj

dζ
|ζ=0 = 0 Nj(1/2) = 0

dNj

dη
|η=1/2 = 0

(B.12)

for all j > 1, where η = x, ξ = x
ε
and ζ = 1−x

ε
. Applying boundary conditions to the

inner solutions, then matching to the outer solutions, of each order i in succession

results in the following asymptotic beam-string solution

N(η,ξ,ζ;ε̂)=α+(γ−5α+4ψ−2φ)η+(8α−4γ−4ψ+6φ)η2+(4γ−4α−4φ)η3

+ε[(5α−γ+β−4ψ+2φ)+(10γ−26α−5β−δ+16ψ−12φ)η

+(44α−28γ+8β+4δ−16ψ+24φ)η2+(24γ−24α−4β−4δ−16φ)η3

+(γ−5α−β+4ψ−2φ)e−ξ+(α−5γ+δ+4ψ+2φ)e−ζ]

+ε2[(26α−5γ+5β+δ−16ψ+12φ)+(76γ−140α−26β−10δ+64ψ−72φ)η

+(248α−184γ+44β+28δ−64ψ+144φ)η2+(144γ−144α−24β−24δ−96φ)η3

+(10γ−26α−5β−δ+16ψ−12φ)e−ξ+(10α−26γ+5δ+β+16ψ+12φ)e−ζ]

+ε3[(140α−76γ+26β+10δ−64ψ+72φ)+(520γ−776α−140β−76δ+256ψ−432φ)η

+(1424α−1168γ+248β+184δ−256ψ+864φ)η2+(864γ−864α−144β−144δ−576φ)η3

+(76γ−140α−26β−10δ+64ψ−72φ)e−ξ+(76α−140γ+26δ+10β+64ψ+72φ)e−ζ]+···

(B.13)

where

α = w(0) γ = w(1) ψ = w(1/2)

β = w,x(0) δ = w,x(1) φ = w,x(1/2)
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Shape Function w(0) w,x(0) w(1) w,x(1) w(1/2) w,x(1/2)
Boundary Condition α β γ δ ψ φ

N1 1 0 0 0 0 0
N2 0 1 0 0 0 0
N3 0 0 1 0 0 0
N4 0 0 0 1 0 0
N5 0 0 0 0 1 0
N6 0 0 0 0 0 1

Table B.2 Cubic C1 Shape Function Boundary Conditions

Applying the boundary conditions in Table B.2 to Equation B.13 produces the

following shape function vector:

NT =




N1

N2

N3

N4

N5

N6




=




1− 5η + 8η2 − 4η3

0

η − 4η2 + 4η3

0

4η − 4η2

−2η + 6η2 − 4η3




+ ε




5− 26η + 44η2 − 24η3 − 5e−ξ + e−ζ

1− 5η + 8η2 − 4η3 − e−ξ

−1 + 10η − 28η2 + 24η3 + e−ξ − 5e−ζ

−η + 4η2 − 4η3 + e−ζ

−4 + 16η − 16η2 + 4e−ξ + 4e−ζ

2− 12η + 24η2 − 16η3 − 2e−ξ + 2e−ζ




+ ε2




26− 140η + 248η2 − 144η3 − 26e−ξ + 10e−ζ

5− 26η + 44η2 − 24η3 − 5e−ξ + e−ζ

−10 + 76η − 184η2 + 144η3 + 10e−ξ − 26e−ζ

1− 10η + 28η2 − 24η3 − e−ξ + 5e−ζ

−16 + 64η − 64η2 + 16e−ξ + 16e−ζ

12− 72η + 144η2 − 96η3 − 12e−ξ + 12e−ζ




+ · · ·

(B.15)
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Figure B.2 Cubic C1 Shape Functions: (a) ε = 0.01 (b) ε = 0.1

A plot of these shape functions (Figure B.2) illustrates the behavior of these

functions. The shape functions plotted on the left and right are as a result of selecting

ε values of 0.01 and 0.1, respectively. This element can support nodal slopes, and

allows some curvature away from the boundary. It should also be noted that the

shape functions themselves are expansions in orders of ε, which can be included early

in a perturbation finite element development. These shape functions can be used for

analysis where C0 elements are not enough, but standard C1 elements are too stiff.
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Appendix C. Computer Routines
The computer routines are available on the comprehensive CD containing this

document. Mathematica routines produce the Lagrangians, equations of motion,

perturbation expansions and finite element matrix definitions. Many analytical so-

lutions are produced using MathCAD worksheets.

Finite element routines were all implemented through MATLAB routines. The

linear beam-string set of functions are provided here. The similar nonlinear functions

are on the CD.

C.1 Linear Beam-String

C.1.1 Matlab Routines.

C.1.1.1 BS3FEM. BS3FEM is the main finite element routine.

The user passes the elemental values as described in the header, and, depending on

parameters, either a static or dynamic evaluation is performed. The routines called

by BS3FEM follow.

function [vr,dr]=bs3fem(order, p, nodes, thick, dens, youngs, verbose, dyn, mode, mx)

% bs3fem - Finite Element simulation of beam-string

% written by : Capt James Rogers, USAF, AFIT

%

% order = order of perturbation levels terms to include (0 to 3)

% p = pressure differential per unit length applied to beam

% nodes = distance from left end of each element interface

% thick = thickness of beam

% dens = beam material density (mass/L^3)

% youngs = Material’s Young’s Modulus (F/L^2)

% verbose = 0: No Plots Produced

% 1: All Plots Created

% dyn = 0: Static Only

% 1: Dynamic \/ \/ \/ \/

% mode = 0: Clamped Results Returned

% 1: Free Results Returned

% mx = maximum modes returned

%

% vr = Eigenvectors (Dynamic)

% Analytic/Total Static FEM/

% Only 1st Level FEM Solutions (Static)

% dr = Eigenvalues (Dynamic)
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% = Corresponding Axial Locations (Static)

%

num=length(nodes)-1;

len = nodes(length(nodes));

% Compute element values ans store in element structure

for i=1:num

els(i).len = nodes(i+1)-nodes(i);

els(i).t = dens*(els(i).len)^2/youngs;

els(i).eps = sqrt(((thick/(els(i).len))^2)/12);

els(i).ps = p*els(i).len/youngs/thick;

end

disp=3; %nodes per element

dpn=2; %displacements per node

%Some presized matrices for use later

kg0=zeros(dpn*((disp-1)*num+1),dpn*((disp-1)*num+1));

mg0=zeros(dpn*((disp-1)*num+1),dpn*((disp-1)*num+1));

pg0=zeros(dpn*((disp-1)*num+1),1);

w0=zeros(dpn*((disp-1)*num+1),1);

if order > 0

kg1=zeros(dpn*((disp-1)*num+1),dpn*((disp-1)*num+1));

mg1=zeros(dpn*((disp-1)*num+1),dpn*((disp-1)*num+1));

pg1=zeros(dpn*((disp-1)*num+1),1);

w1=zeros(dpn*((disp-1)*num+1),1);

if order > 1

kg2=zeros(dpn*((disp-1)*num+1),dpn*((disp-1)*num+1));

mg2=zeros(dpn*((disp-1)*num+1),dpn*((disp-1)*num+1));

pg2=zeros(dpn*((disp-1)*num+1),1);

w2=zeros(dpn*((disp-1)*num+1),1);

end

end

chunk=100;

ds=zeros(chunk*num+1,order+1);

x=zeros(chunk*num+1,1);

ws=zeros(chunk*num+1,order+2);

if order > 0

we=zeros(chunk*num+1,order);

end

%Build System Matrices

for i=1:num

nodeids=[(disp-1)*i-(disp-2), (disp-1)*i+(disp-2), (disp-1)*i];

kg0=BuildStiffness(kg0,K0b(els(i).eps,els(i).len),nodeids);

mg0=BuildMass(mg0,M0b(els(i).eps,els(i).len),nodeids);

pg0=BuildForce(pg0,els(i).ps*P0b(els(i).eps,els(i).len),nodeids);

if order > 0

kg1=BuildStiffness(kg1,els(i).eps*K1b(els(i).eps,els(i).len),nodeids);

mg1=BuildMass(mg1,els(i).eps*M1b(els(i).eps,els(i).len),nodeids);

pg1=BuildForce(pg1,els(i).ps*els(i).eps*P1b(els(i).eps,els(i).len),nodeids);

if order > 1

kg2=BuildStiffness(kg2,els(i).eps^2*K2b(els(i).eps,els(i).len),nodeids);

mg2=BuildMass(mg2,els(i).eps^2*M2b(els(i).eps,els(i).len),nodeids);

pg2=BuildForce(pg2,els(i).ps*els(i).eps^2*P2b(els(i).eps,els(i).len),nodeids);

end

end

end

%Clamped-Clamped System Matrices

m0c=mg0(dpn+1:dpn*(disp-1)*num,dpn+1:dpn*(disp-1)*num);

k0c=kg0(dpn+1:dpn*(disp-1)*num,dpn+1:dpn*(disp-1)*num);
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if order > 0

m1c=mg1(dpn+1:dpn*(disp-1)*num,dpn+1:dpn*(disp-1)*num);

k1c=kg1(dpn+1:dpn*(disp-1)*num,dpn+1:dpn*(disp-1)*num);

if order > 1

m2c=mg2(dpn+1:dpn*(disp-1)*num,dpn+1:dpn*(disp-1)*num);

k2c=kg2(dpn+1:dpn*(disp-1)*num,dpn+1:dpn*(disp-1)*num);

end

end

%Static solution

w0(dpn+1:dpn*(disp-1)*num)=k0c\pg0(dpn+1:dpn*(disp-1)*num);

if order > 0

w1(dpn+1:dpn*(disp-1)*num)=-k0c\(k1c*w0(dpn+1:dpn*(disp-1)*num)+...

pg1(dpn+1:dpn*(disp-1)*num));

if order > 1

w2(dpn+1:dpn*(disp-1)*num)=-k0c\(k1c*w1(dpn+1:dpn*(disp-1)*num)+...

k2c*w0(dpn+1:dpn*(disp-1)*num)+pg2(dpn+1:dpn*(disp-1)*num));

end

end

start=0;

for i=1:num

nodeids=[(disp-1)*i-(disp-2), (disp-1)*i+(disp-2), (disp-1)*i];

d0=GetDisplacements(w0,dpn,nodeids);

if order > 0

d1=GetDisplacements(w1,dpn,nodeids);

if order > 1

d2=GetDisplacements(w2,dpn,nodeids);

end

end

for j=0:chunk

ws((i-1)*chunk+j+1,2)=bs3shape(d0,(j/chunk),els(i).eps);

if order > 0

ws((i-1)*chunk+j+1,3)=bs3shape(d0+d1,(j/chunk),els(i).eps);

if order > 1

ws((i-1)*chunk+j+1,4)=bs3shape(d0+d1+d2,(j/chunk),els(i).eps);

end

end

x((i-1)*chunk+j+1)=start + (j/chunk)*els(i).len;

end

start=start+els(i).len;

end

%Analytic Solution

eps=sqrt(((thick/len)^2)/12);

pa=p*len/youngs/thick;

for i=1:chunk*num+1

xl=x(i)/len;

ws(i,1)=len*(pa/2)*((xl-xl^2) - eps*(1-exp(-xl/eps)-exp((xl-1)/eps)));

if order > 0

we(i,1)=ws(i,1)-ws(i,2);

if order > 1

we(i,2)=we(i,1)-ws(i,3);

end

end

end

if dyn == 0 %Static Requested

if verbose > 0

figure

plot(x,ws);

title(’Static Shape’);

if order == 0

legend(’Analytical’,’w0’);

elseif order == 1

C-3



www.manaraa.com

legend(’Analytical’,’w0’, ’w0 + w1’);

elseif order == 2

legend(’Analytical’,’w0’, ’w0 + w1’, ’w0 + w1 + w2’);

end

figure

plot(x,ws(:,1),’-.’,x, ws(:,order+2),’-’);

title(’Static Shape’);

legend(’Analytical Solution’,’FEM Solution’);

figure

plot(x,ws(:,1)-ws(:,order+2));

title(’Static Shape Error’);

if order > 0

figure

plot(x,we);

title(’Shape Errors’);

if order == 1

legend(’W1 Correction’);

elseif order == 2

legend(’W1 Correction’,’W2 Correction’);

end

end

end

dr = x;

vr = ws;

return

else %Dynamic Requested

% Presized Matrices

v0=zeros(dpn*((disp-1)*num+1),dpn*((disp-1)*num+1));

d0=zeros(dpn*((disp-1)*num+1),dpn*((disp-1)*num+1));

if order > 0

v1=zeros(dpn*((disp-1)*num+1),dpn*((disp-1)*num+1));

d1=zeros(dpn*((disp-1)*num+1),dpn*((disp-1)*num+1));

if order > 1

v2=zeros(dpn*((disp-1)*num+1),dpn*((disp-1)*num+1));

d2=zeros(dpn*((disp-1)*num+1),dpn*((disp-1)*num+1));

end

end

if mode == 0 %Clamped Mode Requested

% Compute Eigenvectors/Values of 0th order system

[v0(dpn+1:dpn*(disp-1)*num,dpn+1:dpn*(disp-1)*num),...

d0(dpn+1:dpn*(disp-1)*num,dpn+1:dpn*(disp-1)*num)]=eig(k0c,m0c);

[vc0,dc0]=sorteigs(v0,d0,0,mx);

omega=sqrt(dc0);

if order>0

%Get 1st Order Correction

for i=1:mx

omega1(i)=(vc0(:,i)’*(kg1-dc0(i)*mg1)*vc0(:,i));

if omega1(i) ~= 0

omega1(i)=omega1(i)/(2*dc0(i)*vc0(:,i)’*mg0*vc0(:,i));

omega(i)=omega(i)+omega1(i);

end

end

if order>1

%Get Second Order Correction

for i=1:mx

omega2(i)=(vc0(:,i)’*(kg2-dc0(i)*(omega1(i)^2*mg0+2*omega1(i)*mg1+mg2))*vc0(:,i));

if omega2(i) ~= 0

omega2(i)=omega2(i)/(2*dc0(i)*vc0(:,i)’*mg0*vc0(:,i));
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omega(i)=omega(i)+omega2(i);

end

end

end

end

if verbose>0

if length(dc0)>0

figure;

plot3shape(vc0,dpn,els);

title(’Clamped V0 Modes’);

figure;

bar(dc0);

title(’Clamped D0 - Eigenvalues’);

end

if order > 0

figure;

bar(omega1)

title(’1st Order Frequency Corrections’);

if order > 1

figure;

bar(omega2)

title(’2nd Order Frequency Corrections’);

end

end

figure

bar(omega/omega(1));

title(’Normalized Frequencies: \omega/\omega_0’);

end

vr = vc0;

dr = omega;

elseif mode == 1

%Free-Free

[v0,d0]=eig(kg0,mg0);

[vf0,df0]=sorteigs(v0,d0,1,mx);

omega=sqrt(df0);

if order > 0

for i=1:mx

omega1(i)=(vf0(:,i)’*(kg1-df0(i)*mg1)*vf0(:,i));

if omega1(i) ~= 0

omega1(i)=omega1(i)/(2*df0(i)*vf0(:,i)’*mg0*vf0(:,i));

omega(i)=omega(i)+omega1(i);

end

end

if order>1

for i=1:mx

omega2(i)=(vf0(:,i)’*(kg2-df0(i)*(omega1(i)^2*mg0+2*omega1(i)*mg1+mg2))*vf0(:,i));

if omega2(i) ~= 0

omega2(i)=omega2(i)/(2*df0(i)*vf0(:,i)’*mg0*vf0(:,i));

omega(i)=omega(i)+omega2(i);

end

end

end

end

if verbose>0

if order > 0

if length(df0)>0

figure;

plot3shape(vf0,dpn,els);

title(’Free V0 Modes’);

figure;
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bar(df0);

title(’Free D0 - Eigenvalues’);

end

figure;

bar(omega1)

title(’1st Order Frequency Corrections’);

if order > 1

figure;

bar(omega2)

title(’2nd Order Frequency Corrections’);

end

end

figure

bar(real(omega/omega(1)));

title(’Normailized Frequencies: \omega/\omega_0’);

end

vr = vf0;

dr = omega;

end

end

C.1.1.2 BUILDSTIFFNESS. BUILDSTIFFNESS packages the
elemental stiffness matrix into the global matrix depending on the node identities
included.

function [kg]=BuildStiffness(kg, ke, nodelist)

% Build Stiffness -- Add element stiffness to global stiffness

% kg = global stiffness matrix

% ke = element stiffness matrix

% nodelist = vector of node ids used to place elemental values in kg

% disp represents the number of displacement variables per node

disp=max(size(ke))/max(size(nodelist));

for i=1:max(size(nodelist))

for j=1:max(size(nodelist))

kg((nodelist(i)-1)*disp+1:nodelist(i)*disp,(nodelist(j)-1)*disp+1:nodelist(j)*disp)=...

kg((nodelist(i)-1)*disp+1:nodelist(i)*disp,(nodelist(j)-1)*disp+1:nodelist(j)*disp)+...

ke((i-1)*disp+1:i*disp,(j-1)*disp+1:j*disp);

end

end

C.1.1.3 BUILDMASS. BUILDMASS packages the elemental
mass matrix into the global matrix depending on the node identities included.

function [mg]=BuildMass(mg, me, nodelist)

% Build Mass -- Add element mass to global mass

% mg = global mass matrix

% me = element mass matrix

% nodelist = vector of node ids used to place elemental values in mg

% disp represents the number of displacement variables per node

disp=max(size(me))/max(size(nodelist));

for i=1:max(size(nodelist))

for j=1:max(size(nodelist))

mg((nodelist(i)-1)*disp+1:nodelist(i)*disp,(nodelist(j)-1)*disp+1:nodelist(j)*disp)=...
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mg((nodelist(i)-1)*disp+1:nodelist(i)*disp,(nodelist(j)-1)*disp+1:nodelist(j)*disp)+...

me((i-1)*disp+1:i*disp,(j-1)*disp+1:j*disp);

end

end

C.1.1.4 BUILDFORCE. BUILDFORCE packages the elemental
forcing matrix into the global matrix depending on the node identities included.

function [fg]=BuildForce(fg, fe, nodelist)

% Build Force -- Add element force to global force

% fg = global force vector

% fe = element force vector

% nodelist = vector of node ids used to place elemental values in fg

% disp represents the number of displacement variables per node

disp=max(size(fe))/max(size(nodelist));

for i=1:max(size(nodelist))

fg((nodelist(i)-1)*disp+1:nodelist(i)*disp)=...

fg((nodelist(i)-1)*disp+1:nodelist(i)*disp)+fe((i-1)*disp+1:i*disp);

end

C.1.1.5 SORTEIGS. SORTEIGS is just a small routine which
organizes the provided eigensystem depending on the caller’s request.

function [vo,do]=sorteigs(vi,di,zer,mx)

% SortEigs returns ordered eigensystem requested

%

% vi : eigenvectors

% di : eigenvalues

%

% zer : 0 include only positive definite results

% 1 include positive semi-definite results

% -1 include all

%

% mx : Maximun requested

%

if nargin ~= 4

mx = length(di);

end

eigs=diag(di);

cnt=0;

tot=0;

do=[];

vo=[];

if zer >= 0

%count total positives

for i=1:length(eigs)

if isreal(eigs(i))

if zer==0

if eigs(i)>0

tot=tot+1;

end

else

if eigs(i)>=0

tot=tot+1;

end

end

end

end
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else

tot=length(eigs);

end

if tot > 0

d=zeros(tot,1);

v=zeros(max(size(vi)),tot);

if zer>=0

%find valid eigenstructure

for i=1:length(eigs)

if isreal(eigs(i))

if zer == 0

if eigs(i)>0

cnt=cnt+1;

v(:,cnt)=vi(:,i);

d(cnt)=eigs(i);

end

else

if eigs(i)>=0

cnt=cnt+1;

v(:,cnt)=vi(:,i);

d(cnt)=eigs(i);

end

end

end

end

else

d=eigs;

v=vi;

cnt=tot;

end

%order from smallest eigenvalue to largest

for i=1:cnt-1

for j=1:cnt-i

if d(j)>d(j+1)

tmp=d(j);

d(j)=d(j+1);

d(j+1)=tmp;

tv=v(:,j);

v(:,j)=v(:,j+1);

v(:,j+1)=tv;

end

end

end

if zer < 0

vo=v;

do=d;

else

if cnt>mx

vo=v(:,1:mx);

do=d(1:mx);

else

vo=v;

do=d;

end

end

end

C.1.2 Element Matrices.
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C.1.2.1 K0b. K0b computes the 0th order elemental stiffness
matrix.

function [K]=K0b(eps,L)

K=[(L*(47 + 30*eps*(-6 + 13*L)))/15 ...

eps*L*(-1 + 5*L) ...

-(L*(7 + 30*eps*(-6 + 5*L)))/15 ...

eps*(-1 + L)*L ...

(-8*L*(1 + 6*eps*L))/3 ...

(4*L*(1 + 5*eps*(-1 + 3*L)))/5; ...

eps*L*(-1 + 5*L) ...

eps*L^2 ...

-(eps*(-1 + L)*L) ...

0 ...

-4*eps*L^2 ...

2*eps*L^2; ...

-(L*(7 + 30*eps*(-6 + 5*L)))/15 ...

-(eps*(-1 + L)*L) ...

(L*(47 + 30*eps*(-6 + 13*L)))/15 ...

eps*(1 - 5*L)*L ...

(-8*L*(1 + 6*eps*L))/3 ...

(-4*L*(1 + 5*eps*(-1 + 3*L)))/5; ...

eps*(-1 + L)*L ...

0 ...

eps*(1 - 5*L)*L ...

eps*L^2 ...

4*eps*L^2 ...

2*eps*L^2; ...

(-8*L*(1 + 6*eps*L))/3 ...

-4*eps*L^2 ...

(-8*L*(1 + 6*eps*L))/3 ...

4*eps*L^2 ...

(16*L*(1 + 6*eps*L))/3 ...

0; ...

(4*L*(1 + 5*eps*(-1 + 3*L)))/5 ...

2*eps*L^2 ...

(-4*L*(1 + 5*eps*(-1 + 3*L)))/5 ...

2*eps*L^2 ...

0 ...

(4*L*(1 + 10*eps*L))/5];

C.1.2.2 K1b. K1b computes the 1st order elemental stiffness
matrix.

function [K]=K1b(eps,L)

K=[-32*eps + (484/15 - 144*eps)*L + 280*eps*L^2 ...

-4*eps + (47/15 - 18*eps)*L + 52*eps*L^2 ...

-32*eps + (-164/15 + 144*eps)*L - 152*eps*L^2 ...

4*eps + (7/15 - 18*eps)*L + 20*eps*L^2 ...

(-64*(-3*eps + L + 6*eps*L^2))/3 ...

12*L*(1 + 6*eps*(-1 + 2*L)); ...

-4*eps + (47/15 - 18*eps)*L + 52*eps*L^2 ...

2*eps*L*(-1 + 5*L) ...

-4*eps + (-7/15 + 18*eps)*L - 20*eps*L^2 ...

2*eps*(-1 + L)*L ...
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(-8*(-3*eps + L + 12*eps*L^2))/3 ...

(4*L*(1 + 10*eps*(-1 + 3*L)))/5; ...

-32*eps + (-164/15 + 144*eps)*L - 152*eps*L^2 ...

-4*eps + (-7/15 + 18*eps)*L - 20*eps*L^2 ...

-32*eps + (484/15 - 144*eps)*L + 280*eps*L^2 ...

4*eps + (-47/15 + 18*eps)*L - 52*eps*L^2 ...

(-64*(-3*eps + L + 6*eps*L^2))/3 ...

-12*L*(1 + 6*eps*(-1 + 2*L)); ...

4*eps + (7/15 - 18*eps)*L + 20*eps*L^2 ...

2*eps*(-1 + L)*L ...

4*eps + (-47/15 + 18*eps)*L - 52*eps*L^2 ...

2*eps*L*(-1 + 5*L) ...

(8*(-3*eps + L + 12*eps*L^2))/3 ...

(4*L*(1 + 10*eps*(-1 + 3*L)))/5; ...

(-64*(-3*eps + L + 6*eps*L^2))/3 ...

(-8*(-3*eps + L + 12*eps*L^2))/3 ...

(-64*(-3*eps + L + 6*eps*L^2))/3 ...

(8*(-3*eps + L + 12*eps*L^2))/3 ...

(128*(-3*eps + L + 6*eps*L^2))/3 ...

0; ...

12*L*(1 + 6*eps*(-1 + 2*L)) ...

(4*L*(1 + 10*eps*(-1 + 3*L)))/5 ...

-12*L*(1 + 6*eps*(-1 + 2*L)) ...

(4*L*(1 + 10*eps*(-1 + 3*L)))/5 ...

0 ...

(32*L*(1 + 5*eps*(-1 + 3*L)))/5];

C.1.2.3 K2b. K2b computes the 2nd order elemental stiffness
matrix.

function [K]=K2b(eps,L)

K=[-256*eps + 64/L + (1292/5 - 1296*eps)*L + 2328*eps*L^2 ...

-48*eps + (484/15 - 180*eps)*L + 420*eps*L^2 ...

-256*eps - 32/L + (4*(-163 + 1620*eps)*L)/5 - 1560*eps*L^2 ...

48*eps + (164/15 - 180*eps)*L + 228*eps*L^2 ...

(-32*(1 - 16*eps*L + 4*L^2 + 24*eps*L^3))/L ...

(48*(5 - 3*(-4 + 25*eps)*L^2 + 135*eps*L^3))/(5*L); ...

-48*eps + (484/15 - 180*eps)*L + 420*eps*L^2 ...

-8*eps + (47/15 - 24*eps)*L + 78*eps*L^2 ...

-48*eps + (-164/15 + 180*eps)*L - 228*eps*L^2 ...

8*eps + (7/15 - 24*eps)*L + 30*eps*L^2 ...

(-32*(-9*eps + 2*L + 18*eps*L^2))/3 ...

12*L*(1 + 2*eps*(-4 + 9*L)); ...

-256*eps - 32/L + (4*(-163 + 1620*eps)*L)/5 - 1560*eps*L^2 ...

-48*eps + (-164/15 + 180*eps)*L - 228*eps*L^2 ...

-256*eps + 64/L + (1292/5 - 1296*eps)*L + 2328*eps*L^2 ...

48*eps + (-484/15 + 180*eps)*L - 420*eps*L^2 ...

(-32*(1 - 16*eps*L + 4*L^2 + 24*eps*L^3))/L ...

(-48*(5 - 3*(-4 + 25*eps)*L^2 + 135*eps*L^3))/(5*L); ...

48*eps + (164/15 - 180*eps)*L + 228*eps*L^2 ...

8*eps + (7/15 - 24*eps)*L + 30*eps*L^2 ...

48*eps + (-484/15 + 180*eps)*L - 420*eps*L^2 ...

-8*eps + (47/15 - 24*eps)*L + 78*eps*L^2 ...

(32*(-9*eps + 2*L + 18*eps*L^2))/3 ...

12*L*(1 + 2*eps*(-4 + 9*L)); ...
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(-32*(1 - 16*eps*L + 4*L^2 + 24*eps*L^3))/L ...

(-32*(-9*eps + 2*L + 18*eps*L^2))/3 ...

(-32*(1 - 16*eps*L + 4*L^2 + 24*eps*L^3))/L ...

(32*(-9*eps + 2*L + 18*eps*L^2))/3 ...

(64*(1 - 16*eps*L + 4*L^2 + 24*eps*L^3))/L ...

0; ...

(48*(5 - 3*(-4 + 25*eps)*L^2 + 135*eps*L^3))/(5*L) ...

12*L*(1 + 2*eps*(-4 + 9*L)) ...

(-48*(5 - 3*(-4 + 25*eps)*L^2 + 135*eps*L^3))/(5*L) ...

12*L*(1 + 2*eps*(-4 + 9*L)) ...

0 ...

(48*(5 + (7 - 40*eps)*L^2 + 90*eps*L^3))/(5*L)];

C.1.2.4 M0b. M0b computes the 0th order elemental mass matrix.

function [M]=M0b(eps,L)

M=[(3*L^3)/35 0 L^3/70 0 L^3/15 -L^3/70;

0 0 0 0 0 0;

L^3/70 0 (3*L^3)/35 0 L^3/15 L^3/70;

0 0 0 0 0 0;

L^3/15 0 L^3/15 0 (8*L^3)/15 0;

-L^3/70 0 L^3/70 0 0 (2*L^3)/105];

C.1.2.5 M1b. M1b computes the 1st order elemental mass matrix.

function [M]=M1b(eps,L)

M=[(-4*eps*L^2)/3 + (29*L^3)/35 ...

-(eps*L^2)/6 + (3*L^3)/35 ...

-(L^2*(140*eps + 3*L))/105 ...

((35*eps - 3*L)*L^2)/210 ...

(-2*L^2*(10*eps + L))/15 ...

(2*L^3)/35; ...

-(eps*L^2)/6 + (3*L^3)/35 ...

0 ...

(L^2*(-35*eps + 3*L))/210 ...

0 ...

(L^2*(-10*eps + L))/15 ...

-L^3/70; ...

-(L^2*(140*eps + 3*L))/105 ...

(L^2*(-35*eps + 3*L))/210 ...

(-4*eps*L^2)/3 + (29*L^3)/35 ...

(eps*L^2)/6 - (3*L^3)/35 ...

(-2*L^2*(10*eps + L))/15 ...

(-2*L^3)/35; ...

((35*eps - 3*L)*L^2)/210 ...

0 ...

(eps*L^2)/6 - (3*L^3)/35 ...

0 ...

-(L^2*(-10*eps + L))/15 ...

-L^3/70; ...

(-2*L^2*(10*eps + L))/15 ...

(L^2*(-10*eps + L))/15 ...

(-2*L^2*(10*eps + L))/15 ...

-(L^2*(-10*eps + L))/15 ...

(-16*L^2*(-10*eps + L))/15 ...

0; ...
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(2*L^3)/35 ...

-L^3/70 ...

(-2*L^3)/35 ...

-L^3/70 ...

0 ...

(-4*L^3)/35];

C.1.2.6 M2b. M2b computes the 2nd order elemental mass ma-
trix.

function [M]=M2b(eps,L)

M=[-10*eps^2*L + (7*eps*L^2)/3 + (219*L^3)/35 ...

-(eps^2*L) + (eps*L^2)/2 + (29*L^3)/35 ...

26*eps^2*L - (47*eps*L^2)/3 - (51*L^3)/35 ...

-5*eps^2*L + (5*eps*L^2)/2 + L^3/35 ...

(-8*L*(30*eps^2 + 5*eps*L + 4*L^2))/15 ...

(6*L*(-10*eps^2 + 5*eps*L + L^2))/5; ...

-(eps^2*L) + (eps*L^2)/2 + (29*L^3)/35 ...

(eps*L^2)/6 + (3*L^3)/35 ...

5*eps^2*L - (5*eps*L^2)/2 - L^3/35 ...

-(eps^2*L) + (eps*L^2)/3 - L^3/70 ...

(-2*L*(30*eps^2 + 15*eps*L + L^2))/15 ...

-2*eps^2*L + eps*L^2 + (2*L^3)/35; ...

26*eps^2*L - (47*eps*L^2)/3 - (51*L^3)/35 ...

5*eps^2*L - (5*eps*L^2)/2 - L^3/35 ...

-10*eps^2*L + (7*eps*L^2)/3 + (219*L^3)/35 ...

eps^2*L - (eps*L^2)/2 - (29*L^3)/35 ...

(-8*L*(30*eps^2 + 5*eps*L + 4*L^2))/15 ...

(-6*L*(-10*eps^2 + 5*eps*L + L^2))/5; ...

-5*eps^2*L + (5*eps*L^2)/2 + L^3/35 ...

-(eps^2*L) + (eps*L^2)/3 - L^3/70 ...

eps^2*L - (eps*L^2)/2 - (29*L^3)/35 ...

(eps*L^2)/6 + (3*L^3)/35 ...

(2*L*(30*eps^2 + 15*eps*L + L^2))/15 ...

-2*eps^2*L + eps*L^2 + (2*L^3)/35; ...

(-8*L*(30*eps^2 + 5*eps*L + 4*L^2))/15 ...

(-2*L*(30*eps^2 + 15*eps*L + L^2))/15 ...

(-8*L*(30*eps^2 + 5*eps*L + 4*L^2))/15 ...

(2*L*(30*eps^2 + 15*eps*L + L^2))/15 ...

(-16*L*(-30*eps^2 - 35*eps*L + L^2))/15 ...

0; ...

(6*L*(-10*eps^2 + 5*eps*L + L^2))/5 ...

-2*eps^2*L + eps*L^2 + (2*L^3)/35 ...

(-6*L*(-10*eps^2 + 5*eps*L + L^2))/5 ...

-2*eps^2*L + eps*L^2 + (2*L^3)/35 ...

0 ...

(-4*L*(70*eps^2 - 35*eps*L + L^2))/35];

C.1.2.7 P0b. P0b computes the 0th order elemental forcing ma-
trix.

function [P]=P0b(eps,L)

P=[L^3/6; 0; L^3/6; 0; (2*L^3)/3; 0];
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C.1.2.8 P1b. P1b computes the 1st order elemental forcing ma-
trix.

function [P]=P1b(eps,L)

P=[(2*L^2*(-6*eps + L))/3; (L^2*(-6*eps + L))/6; (2*L^2*(-6*eps + L))/3;

-(L^2*(-6*eps + L))/6; (-4*L^2*(-6*eps + L))/3; 0];

C.1.2.9 P2b. P2b computes the 2nd order elemental forcing ma-
trix.

function [P]=P2b(eps,L)

P=[(8*L^2*(-6*eps + L))/3; (2*L^2*(-6*eps + L))/3;

(8*L^2*(-6*eps + L))/3; (-2*L^2*(-6*eps + L))/3;

(-16*L^2*(-6*eps + L))/3; 0];
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